Water Resources Data Minnesota Water Year 1982 Volume 1. Great Lakes and Souris-Red-Rainy River Basins U.S. GEOLOGICAL SURVEY WATER-DATA REPORT MN-82-1 Prepared in cooperation with the Minnesota Department of Natural Resources, Division of Waters; the Minnesota Department of Transportation; and with other State, municipal, and Federal agencies ## CALENDAR FOR WATER YEAR 1982 | | | | | | | | | | 19 | 81 | | | | | | | | | | | |----|----|------|-----|----|----|----|----|----|------|------|----|----|----|----|----|-----|------|----|----|----| | | (| OCT | OBE | R | | - | | 1 | NOV | ЕМВ | ER | | | | | DEC | ЕМВ | ER | | | | S | M | T | W | Т | F | S | S | M | T | W | T | F | S | s | M | Т | W | T | F | S | | | | | | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | | 1 | 2 | 3 | 4 | 5 | | 4 | 5 | 6 | 7 | | | 10 | | | | | | | 14 | 6 | 7 | 8 | | 10 | | | | | - | - | | | | 17 | 15 | | | | | | | | | 15 | | | | | | | | | | | | 24 | | | | | | | 28 | | | 22 | | | | | | | 26 | | | | | | 29 | | | | | - | 20 | | | 29 | | | | | | | | - | | | | | | | 19 | 82 | | | | | | | | | | | | | | JANI | UAR | Y | | | | 1 | FEBI | RUA | RY | | | | | MAI | RCH | | | | | S | M | Т | W | T | F | S | S | M | T | W | T | F | S | S | M | T | W | T | F | S | | | | | | | 1 | 2 | | 1 | 2 | 3 | 4 | 5 | 6 | | 1 | 2 | 3 | 4 | 5 | 6 | | 3 | 4 | 5 | 6 | 7 | | 9 | 7 | | | | | | 13 | | | 9 | | | | | | 10 | 11 | | | | | 16 | | | | | | | 20 | | | 16 | | | | | | | | | | | | 23 | | | | | | | 27 | | | 23 | | | | | | | 25 | | | | | | 28 | | | | | | | | 29 | 30 | 31 | | | | | 31 | Al | PRI | L | | | | | 1 | YAY | | | | | | J | UNE | | | | | S | M | T | W | T | F | S | S | M | T | W | T | F | S | S | M | T | W | T | F | S | | | | | | 1 | 2 | 3 | | | | | | | 1 | | | 1 | 2 | 3 | 4 | 5 | | 4 | 5 | 6 | 7 | | 9 | | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 6 | 7 | 8 | | | | | | | 12 | - | | | | | | | 11 | | | | | | | 15 | 20 | | | | | | | | 25 | 26 | 27 | 28 | 29 | 30 | | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 27 | 28 | 29 | 30 | | | | | | | | | | | | 30 | 31 | | | | | | | | | | | | | | | | JI | ULY | | | | | | AUG | GUS' | r | | | | S | EPT | EMBI | ER | | | | S | M | T | W | T | F | S | S | M | T | W | T | F | S | S | M | T | W | T | F | S | | | | | | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | | | 1 | 2 | 3 | 4 | | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | | | | | | | | | | | | | | | | 19 | | | | | | | | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 29 | 30 | 31 | | | | | | | 28 | # Water Resources Data Minnesota Water Year 1982 Volume 1. Great Lakes and Souris-Red-Rainy River Basins by Kurt T. Gunard, Joseph H. Hess, James L. Zirbel, and Charles E. Cornelius U.S. GEOLOGICAL SURVEY WATER-DATA REPORT MN-82-1 Prepared in cooperation with the Minnesota Department of Natural Resources, Division of Waters; the Minnesota Department of Transportation; and with other State, municipal, and Federal agencies ## UNITED STATES DEPARTMENT OF THE INTERIOR JAMES G. WATT, Secretary ## GEOLOGICAL SURVEY Dallas L. Peck, Director For additional information write to: District Chief, Water Resources Division U.S. Geological Survey 702 Post Office Building St. Paul, Minnesota 55101 ## PREFACE This volume of the annual hydrologic data report of Minnesota is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface— and ground—water data—collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground—water levels, and water quality provide the hydrologic information needed by State, local, and Federal agencies, and the private sector for developing and managing our Nation's land and water resources. Hydrologic data for Minnesota are contained in 2 volumes: Volume 1. Great Lakes and Souris-Red-Rainy River Basins Volume 2. Upper Mississippi and Missouri River Basins This report is the culmination of a concerted effort by dedicated personnel of the U.S. Geological Survey who collected, compiled, analyzed, verified, and organized the data, and who typed, edited, and assembled the report. In addition to the authors, who had primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to Geological Survey policy and established guidelines, the following individuals contributed significantly to the preparation of this report: Donald W. Ericson, Subdistrict Chief, Grand Rapids, Minnesota Mark R. Have, Water-Quality Specialist, Minnesota District Henry W. Anderson, Jr., Ground-Water Project Chief, Minnesota District Most of the data were collected, processed, and tabulated by the following individuals: David J. Bauer William D. Bemis Ruth E. Bergstrom Howard D. Braden Alex Brietkrietz Robin G. Brown John L. Callahan Linda M. Christenson Paul E. Felsheim Patrick J. Finnegan William A. Gothard Jeffrey L. Henry Jerry K. Hicks James E. Jacques Roderick L. Johnson Gregory R. Melhus Gregory B. Mitton Luanne Nelson Charles J. Smith Gregory W. Stratton Lan H. Tornes Duane A. Wicklund Tillie L. Yocus Jo Anne A. Jannis typed the text of the report. This report was prepared in cooperation with the State of Minnesota and with other agencies under the general supervision of Donald R. Albin, District Chief, Minnesota. 50272 - 101 REPORT DOCUMENTATION 1. REPORT NO. 3. Recipient's Accession No. **PAGE** USGS/WRD/HD-84/003 4. Title and Subtitle 5. Report Date Water Resources for Minnesota, Water year 1982 October 1983 Volume 1. Great Lakes and Souris-Red-Rainy River Basins 7. Author(s) 8. Performing Organization Rept. No. Kurt T. Gunard, Joseph H. Hess, James L. Zirbel, and Charles E. Cornelius 9. Parforming Organization Nama and Address 10. Project/Task/Work Unit No. USGS-WRD-MN-82-1 11. Contract(C) or Grant(G) No. U.S. Geological Survey, Water Resources Division 702 Post Office Building St. Paul, Minnesota 55101 12. Sponsoring Organization Name and Address 13. Type of Report & Period Covered Annual Oct. 1, 1981 to Sept. 30, 1982 U.S. Geological Survey, Water Resources Division 702 Post Office Building St. Paul, Minnesota 55101 15. Supplementary Notes Prepared in cooperation with the State of Minnesota and with other agencies. #### 16. Abstract (Limit: 200 words) Water-resources data for the 1982 water year for Minnesota consist of records of stage, discharge and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality in wells and springs. This volume contains discharge records for 47 gaging stations; stage-only records for 1 gaging station; stage and contents for 5 lakes and reservoirs; water quality for 15 gaging stations, 2 stage stations, 20 partial-record stations, and 5 wells; and water levels for 47 observation wells. Also included are 43 high-flow partial-record stations. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data, together with the data in Volume 2, represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Minnesota. ## 17. Document Analysis a. Descriptors *Minnesota, *Hydrologic data, *Surface water, *Ground water, *Water quality, Flow rate, Gaging stations, Lakes, Reservoirs, Chemical analyses, Sediments, Water temperatures, Sampling sites, Water levels, Water analyses, Data collection b. Identifiers/Open-Ended Terms ## c. COSATI Field/Group | 18. Availability Statemen: No restriction on distribution | 19. Security Class (This Report) | 21. No. of Pages | |---|----------------------------------|------------------| | This report may be purchased from | UNCLASSIFIED | 220 | | National Technical Information Service | 20. Security Class (This Page) | 22. Price | | Chainefield VA 22161 | UNCLASSIFIED | | (See ANSI-Z39.18) ## CONTENT | Preface | |---| | Introduction | | Hydrologic conditions | | Definition of terms | | Downstream order and station number | | Special networks and programs | | Explanation of stage and water-discharge records | | Collection and computation of data | | Accuracy of field data and computed results | | Other data available | | Records of discharge collected by agencies other than the Geological Survey | | Explanation of water-quality records | | Collection and examination of data | | Water analysis | | Sediment | | Explanation of ground-water level records. | | Collection of the data | | Publications on techniques of water-resources investigations | | Discontinued gaging stations | | Gaging-station records | | Discharge at partial-record stations and miscellaneous sites | | High-flow partial-record stations | | Miscellaneous sites | | Analyses of samples collected at water-quality partial-record stations | | Miscellaneous analyses of streams | | Ground-water records | | Ground-water level records | | Quality of ground-water records | | Index | ## ILLUSTRATIONS | Figure | 1. | Graph showing comparison of discharge at three long-term representative gaging stations for the current year with median discharge for water years 1951-80 | 4 | |--------|----|--|-----| | | 2. | Graph showing comparison of dissolved-solids concentrations for the current year | | | | | with mean monthly values for the period of record | 6 | | | 3. | Hydrograph showing long-term trends of water level for period of record in | | | | | well 155N47W11AAA03, Marshall
County | 7 | | | 4. | Diagram showing system for numbering wells and miscellaneous sites | 13 | | | 5. | Map showing location of water-discharge stations | 18 | | | | Map showing location of water-quality stations | 20 | | | | Map showing location of high-flow partial-record stations | 130 | | | | Map showing location of ground-water wells | 182 | Letter after station name designates type of data: (1) discharge; (e) gage height, elevation, or contents; (c) chemical, radio-chemical, or pesticides; (b) biological or micro-biological; (p) physical (water temperature, sediment, or specific conductance) | | Page | |---|-----------------------| | ST. LAWRENCE RIVER BASIN | J | | STREAMS TRIBUTARY TO LAKE SUPERIOR | 07 177 | | Pigeon River at Middle Falls, near Grand Portage(d p) Baptism River near Beaver Bay | 27,175
28,175 | | Knife River near Two Harbors(d p) | 34,175 | | St. Louis River: Partridge River above Colby Lake at Hoyt Lakes(d p) | 35,175 | | Partridge River near Aurora(d p) St. Louis River near Aurora(d p) | 40,175
41,175 | | St. Louis River at Forbes(d p) | 42,176 | | St. Louis River at Scanlon | 43,176 | | Deer Creek near Holyoke(d p) | 50,176 | | HUDSON BAY BASIN Lake Winnipeg (head of Nelson River): | | | RED RIVER OF THE NORTH BASIN | | | Otter Tail River (head of Red River of the North): Orwell Lake near Fergus Falls(- e) | 51 | | Otter Tail River below Orwell Dam, near Fergus Falls(d p) | 52,176 | | Bois de Sioux River near White Rock, SD | 53,176
54 | | Red River of the North at Hickson, ND | 56 | | Red River of the North at Fargo, ND | 58
- 60 | | Buffalo River near Hawley | 61,176 | | South Branch Buffalo River at Sabin | 62,176
63,177 | | Wild Rice River at Twin Valley(d p) | 64,177
65,177 | | Wild Rice River at Hendrum | 66 | | Marsh River near Shelly(d p) | 69,177 | | Sand Hill River at Climax | 70,177 | | Lower Red Lake near Red Lake | 71
72 1 7 7 | | Red Lake River near Red Lake | 72,177
73,178 | | Thief River near Thief River Falls | 74,178 | | Clearwater River at Plummer | 75,178
76,178 | | Clearwater River at Red Lake Falls(d p) Red Lake River at Crookston(d - c b p) | 77,178
78,178 | | Red Lake River at Crookston | 83 | | Snake River: Middle River at Argyle | 86,178 | | Red River of the North at Drayton, ND | 87 | | Red River of the North at Emerson, Manitoba(d - c b p) Roseau River below South Fork near Malung(d p) | 89
92,179 | | Roseau River below Roseau | 93,137 | | Roseau River at Roseau Lake | 94
95,179 | | Roseau River below State ditch 51, near Caribou | 96,179 | | LAKE OF THE WOODS BASIN (head of Winnipeg River) Namakan River (head of Rainy River): | | | Basswood River: | | | Kawishiwi River near Ely(d - c b p) Filson Creek near Ely(d p) | 103,179
105,179 | | Kawishiwi River near Winton | 106,179 | | Basswood River near Winton | 107,179
108,179 | | Vermilion River: | • | | Vermilion Lake near Soudan | 109
110,180 | | Rainy Lake near Fort Frances, Ontario(- e) | 111 | | Rainy River:
Little Fork River: | | | Sturgeon River near Chisholm(d p) | 112,180 | | Little Fork River at Littlefork | 113,180
119,180 | | Rapid River near Baudette(d p) | 125,180 | | Lake of the Woods at Warroad | 126 | | | Page | |------------------------------|--------------| | BECKER | | | Well 138N41W17ADA01 | 184 | | Well 138N4 2W26CDA01 | 184 | | Well 138N43W18CDA01 | 185 | | Well 140N41W26CCD01 | 185 | | Well 149N31W25DCD01 | 186 | | Well 149N31W25DCD02 | 186 | | Well 149N31W25DCD03 | 186 | | Well 149N31W25DCD04. | 187 | | Well 156N31W36DAA01 | 187 | | Well 156N31W36DAAO2 | 187
188 | | CARLTON | 100 | | Well 047N17W07AAB01 | 188 | | Well 048N17W02CCC01 | 189 | | Well 049N17W17ADD01 | 189 | | CLAY Well 137N45W30CDB01 | 189 | | Well 139N47W05CDC01 | 191 | | Well 139N47W06AAA01. | 191 | | Well 139N48W11ABA01 | 191 | | GRANT | • | | Well 128N43W21CBB01 | 192 | | Well 129N42W09CCC01 | 192 | | Well 130N44W25BCB01ITASCA | 193 | | Well 062N23W35BAB01 | 194 | | Well 148N25W08DDD01 | 194 | | KOOCHICHING | | | Well 066N27W24DAA01 | 195 | | Well 155N26W21DAA01 | 195
196 | | LAKE OF THE WOODS | 190 | | Well 161N34W18Bcco1 | 197 | | MAHNOMEN | | | Well 144N42W20BBA01 | 197 | | MARSHALL Well 155N47W11AAA03 | 198 | | Well 156N48W10DA A0 2 | 198 | | Well 157N48W27BAA01 | 199 | | OTTER TAIL | -,, | | Well 134N41W08CCC01 | 199 | | Well 134N43W14ADB01 | 199 | | Well 136N39W23DCC01 | 200
200 | | Well 136N43W10AAA01 | 201 | | Well 137N39W22ACD01 | 201 | | PENNINGTON | | | Well 154N43W33ADA01 | 201 | | ST. LOUIS | 20.0 | | Well 057N 20W05DAD01 | 20 2
20 2 | | Well 058N18W12CCC01. | 203 | | Well 058N2OW16DBC01 | 203 | | Well 060N13W01BBA01 | 204 | | Well 063N12W26ABB01 | 204 | | TRAVERSE Well 129N47W25CDC01 | 20.5 | | Well 129N47W25GDG01 | 205 | | Well 130N45W15BCC01 | 205 | | Well 136N47W23CCCO1 | 205 | #### INTRODUCTION Water resources data for the 1982 water year for Minnesota consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground water. This volume contains discharge records for 47 gaging stations; stage only records for 1 gaging station; stage and contents for 5 lakes and reservoirs; water quality for 15 gaging stations, 2 stage stations, 20 partial-record stations, and 5 wells; and water levels for 47 observation wells. Also included are 43 high-flow partial-record stations. Additional water data were collected at various sites, not involved in the systematic data collection program, and are published as miscellaneous measurements. These data, together with the data in Volume 2, represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Minnesota. Records of discharge or stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological Survey water-supply papers titled "Surface Water Supply of the United States." Through September 30, 1960, these water-supply papers were in an annual series and then in a 5-year series for 1961-65 and 1966-70. Records of chemical quality, water temperatures, and suspended sediment were published from 1941 to 1970 in an annual series of water supply papers titled "Quality of Surface Waters of the United States." Records of ground-water levels were published from 1935 to 1974 in a series of water-supply papers titled "Ground-Water Levels in the United States." Water-supply papers may be consulted in the libraries of the principal cities in the United States or may be purchased from Branch of Distribution, U.S. Geological Survey, 1200 South Eads Street, Arlington, VA 22202. For water years 1961 through 1974, streamflow data were released by the Geological Survey in annual reports on a State-boundary basis. Water-quality records for water years 1964 through 1974 were similarly released either in separate reports or in conjunction with streamflow records. Beginning with the 1975 water year, water data for streamflow, water quality, and ground water are published as an official Survey report on a State-boundary basis. These official Survey reports carry an identification number consisting of the two letter State abbreviation, the last two digits of the water year, and the volume number. For example, this report is identified as "U.S. Geological Survey Water-Data Report MN-82-1." Water-Data reports are for sale by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161. Additional information, including current prices, for ordering specific reports may be obtained from the district chief at the address given on the back of the title page or by telephone (612) 725-7841. #### COOPERATION The U.S. Geological Survey and organizations of the State of Minnesota have had cooperative agreements for the systematic collection of streamflow records since 1909, for ground-water levels since 1948, and for water-quality records since 1952. Organizations that assisted in collecting data through cooperative agreement with the Survey are: Minnesota Department of Natural Resources, Division of Waters, Larry Seymour, director. Minnesota Department of Transportation, Richard P. Braun, commissioner. Minnesota Pollution Control Agency, Sandra Gardebring, executive director. Metropolitan Waste Control Commission of the Twin Cities Area, George H. Frisch, chairman. Metropolitan Council of the Twin Cities Area, Gerald J. Isaacs, chairman. Elm Creek Conservation Commission, Fred G. Moore, chairman. Red Lake Watershed District, Paul Brekken, president. Middle River-Snake River Watershed District, Donald Rivard, chairman. City of Eagan, Bea Blomquist, mayor. Assistance in the form of funds or services was given by the Corps of Engineers, U.S. Army, in collecting records for 43 gaging stations and 17 water-quality stations published in this report. Eleven gaging stations in the Hudson Bay and St. Lawrence River basins were maintained by funds appropriated to the United States Department of State. Eight of these, on waters adjacent to the international boundary, are maintained by the United States (or Canada) under agreement with Canada (or the United States), and the records are obtained and compiled in a manner equally acceptable in both countries. These stations are designated herein as "International gaging stations." Some records for the Red River of the North, which borders the State on the west, were obtained at the request of other Federal agencies as a part of the program of the U.S. Department of the Interior for development of the Missouri River basin. #### HYDROLOGIC CONDITIONS ## PRECIPITATION AND STREAMFLOW Normal annual precipitation in Minnesota ranges from 19 inches in the northwest to 32 inches in the southeast. The average annual runoff ranges from
less than 2 inches in the west to more than 16 inches in the northeast. The 1982 water year began with rainfall amounts that were considerably above normal throughout the State during October. Total precipitation for the year was above normal over the entire State, except in the east-central part where it was slightly below normal. Annual runoff in 1982 ranged from 0.3 inch in parts of the west to more than 20 inches in the northeast. Runoff statewide averaged 130 percent of normal. Records from stations in northern Minnesota indicate that runoff was near or above average during 1982. Runoff in the Baptism River near Beaver Bay in northeast Minnesota and in the Little Fork River near Littlefork in north-central Minnesota was above average for the year, 20.23 and 10.26 inches, respectively. Conversely, runoff in the Roseau River at Ross in northwest Minnesota was 2.52 inches, which is slightly below average. Figure 1 shows a comparison of monthly and annual mean discharges for these stations to median discharges for a 30-year base period. Annual mean streamflow was below average at only a few stations in the northwest, north-central, and northeast areas. Most of the stations recorded average or above-average streamflow. Flow was excessive at a few stations. No peaks of record were exceeded during 1982 at any gaging stations on streams for which records are published in this volume. #### WATER QUALITY Dissolved-solids data from selected NASQAN stations were used to show variations in water quality in the Great Lakes and Souris-Red-Rainy River basins. With the exception of Roseau River below State Ditch 51 near Caribou, dissolved solids were generally lower than average throughout northern Minnesota (fig. 2). These lower concentrations correspond to the higher-than-normal runoff in this area. The drinking-water standard of 10 mg/L nitrite plus nitrate nitrogen established by the U.S. Environmental Protection Agency was exceeded twice in ground-water samples from a well in Otter Tail County. The well, completed in outwash, was sampled December 3, 1981, and June 6, 1982; nitrite plus nitrate nitrogen concentrations in each of the samples were 11 and 13 mg/L, respectively. A ground-water sample collected from a shallow well in St. Louis County on August 24, 1982, had a manganese concentration of 300 ug/L. The drinking-water standard for manganese is 50 ug/L. ## GROUND-WATER LEVELS Water levels in surficial aquifers throughout Minnesota remained near average during most of the year. Levels generally rose during the first quarter of the water year but varied from above average in the south-central part of Minnesota to below average throughout the western part. Water levels were stable during winter and rose in response to snowmelt in April and May. Springtime water levels in southern Minnesota continued above average; levels in central and northern Minnesota rose to average or above; levels in the northwest remained below average. Water levels in summer remained near seasonal average throughout the State, rising slightly in July and declining in August and September. Water levels in wells completed in confined aquifers in Minnesota remained near seasonal averages, rising to the highest level in spring and declining to the lowest level in summer. A hydrograph of water levels in a representative observation well is shown in figure 3 for the period 1956 to 1982. ## DEFINITION OF TERMS Terms related to streamflow, water-quality, and other hydrologic data, as used in this report, are defined below. See also table for converting inch-pound units to International System of units (SI) on the inside of the back cover. $\frac{\text{Acre-foot}}{\text{and is equivalent to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters.}$ Adenosine triphosphate (ATP) is the primary energy donor in cellular life process. Its central role in living cells makes it an excellent indicator of the presence of living material in water. A measure of ATP, therefore, provides a sensitive and rapid estimate of biomass. ATP is reported in micrograms per liter of the original water sample. Algae are mostly aquatic single-celled, colonial, or multi-celled plants, containing chlorophyll and lacking roots, stems, and leaves. Algal growth potential (AGP) is the maximum algal dry weight biomass that can be produced in a natural water sample under standardized laboratory conditions. The growth potential is the algal biomass present at stationary phase and is expressed as milligrams dry weight of algae produced per liter of sample. Aquifer is a geologic formation, group of formations, or part of a formation that contains sufficient saturated permeable material to yield significant quantities of water to wells and springs. Artesian means confined and is used to describe a well in which the water level stands above the top of the aquifer tapped by the well. A flowing artesian well is one in which the water level is above the land surface. Bacteria are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants. Total coliform bacteria are a particular group of bacteria that are used as indicators of possible sewage pollution. They are characterized as aerobic or facultative anaerobic, gram-negative, nonspore-forming, rod-shaped bacteria which ferment lactose with gas formation within 48 hours at $35^{\circ}\mathrm{C}$. In the laboratory these bacteria are defined as the organisms which produce colonies with a golden-green metallic sheet within 24 hours when incubated at $35^{\circ}\mathrm{C} \pm 1.0^{\circ}\mathrm{C}$ on M-Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. <u>Fecal coliform bacteria</u> are bacteria that are present in the intestine or feces of warmblooded animals. They are often used as indicators of the sanitary quality of the water. In the laboratory they are defined as all organisms which produce blue colonies within 24 hours whien incubated at $44.5^{\circ}\text{C} \pm 0.2^{\circ}\text{C}$ on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. Fecal streptococcal bacteria are bacteria also found in the intestine of warmblooded animals. Their presence in water is considered to verify fecal pollution. They are characterized as gram-positive, cocci bacteria which are capable of growth in brain-heart infusion broth. In the laboratory they are defined as all the organisms which produce red or pink colonies within 48 hours at $35^{\circ}\text{C} \pm 1.0^{\circ}\text{C}$ on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. Bed material is the unconsolidated material of which a streambed, lake, pond, reservoir, or estuary bottom is composed. Biochemical oxygen demand (BOD) is a measure of the quantitiy of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by microorganisms, such as bacteria. Biomass is the amount of living matter present at any given time, expressed as the mass per unit area or volume of habitat. Ash mass is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of 500° C for 1 hour. The ash mass values of zooplankton and phytoplankton are expressed in grams per cubic meter (g/m³), and periphyton and benthic organisms in grams per square meter (g/m²). $\underline{\text{Dry mass}}$ refers to the weight of residue present after drying in an oven at 60°C for zooplankton and 105°C for periphyton, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry mass values are expressed in the same units as ash mass. $\frac{\text{Organic mass}}{\text{mass and the ash mass, and represents the actual mass of the living matter.}} \text{ The organic mass is expressed in the same units as for ash mass and dry mass.}$ Wet mass is the mass of living matter plus contained water. Bottom material: See Bed Material. Cfs-day is the volume of water represented by a flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, approximately 1.9835 acre-feet, or about 646,000 gallons or 2,447 cubic meters. Chemical oxygen demand (COD) is a measure of the chemically oxidizable material in the water, and furnishes an approximation of the amount of organic and reducing material present. The determined value may correlate with natural water color or with carbonaceous organic pollution from sewage or industrial wastes. Figure 1.--Comparison of discharges at three long-term representative gaging ## **EXPLANATION** - Monthly and yearly mean discharges during 1982 water year - Median of monthly and yearly mean discharges for water years 1951-80 Figure 2.--Comparison of dissolved-solids concentrations for the current year with mean monthly values for the periods of record Figure 3.--Hydrograph showing long-term changes in water level in well 155N47W11AAA03, Marshall County, for the 1956-82 water years Chlorophyll refers to the green pigments of plants. Chlorophyll \underline{a} and \underline{b} are the two most common pigments in plants. Color unit is produced by one milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale. Contents is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage. Control designates a feature downstream from the gage that
determines the stage-discharge relation at the gage. This feature may be a natural constriction of the channel, an artificial structure, or a uniform cross section over a long reach of the channel. Cubic feet per second per square mile (CFSM) is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming that the runoff is distributed uniformly in time and area. Cubic foot per second (FT^3/s , ft^3/s) is the rate of discharge representing a volume of 1 cubic foot passing a given point during 1 second and is equivalent to approximately 7.48 gallons per second or 448.8 gallons per minute or 0.02832 cubic meters per second. Discharge is the volume of water (or more broadly, volume of fluid plus suspended sediment), that passes a given point within a given period of time. $\underline{\text{Mean discharge}}$ (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period. Instantaneous discharge is the discharge at a particular instant of time. Dissolved refers to the amount of substance present in true chemical solution. In practice, however, the term includes all forms of substance that will pass through a 0.45 micrometer memmbrane filter, and thus may include some very small (colloidal) suspended particles. Analyses are performed on filtered samples. Diversity index is a numerical expression of evenness of distribution of aquatic organisms. The formula for diversity index is: $$\overline{d} = -\sum_{i=1}^{s} \frac{n_i}{n} \log_2 \frac{n_i}{n}$$ Where n_z is the number of individuals per taxon, n is the total number of individuals, and s is the total number of taxa in the sample of the community. Diversity index values range from zero, when all the organisms in the sample are the same, to some positive number, when some or all of the organisms in the sample are different. Drainage area of a stream at a specified location is that area, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the river above the specified point. Figures of drainage area given herein include all closed basins, or noncontributing areas, within the area unless otherwise noted. <u>Drainage basin</u> is a part of the surface of the earth that is occupied by a drainage system, which consists of a surface stream or a body of impounded surface water together with all tributary surface streams and bodies of impounded surface water. Gage height (G.H.) is the water-surface elevation referred to some arbitrary gage datum. Gage height is often used interchangeably with the more general term "stage," although gage height is more appropriate when used with a reading on a gage. <u>Gaging station</u> is a particular site on a stream, canal, lake, or reservoir where systematic observations of hydrologic data are obtained. Hardness of water is a physical-chemical characteristic that is commonly recognized by the increased quantity of soap required to produce lather. It is attributable to the presence of alkaline earths (principally calcium and magnesium) and is expressed as equivalent calcium carbonate (CaCO₃). Hydrologic unit is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as delineated by the Office of Water Data Coordination on the State Hydrologic Unit Maps; each hydrologic unit is identified by an 8-digit number. Metamorphic stage refers to the stage of development that an organism exhibits during its transformation from an immature form to an adult form. This developmental process exists for most insects, and the degree of difference from the immature stage to the adult form varies from relatively slight to pronounced, with many intermediates. Examples of metamorphic stages of insects are egg-larva-adult or egg-nymph-adult. Methylene blue active substance (MBAS) is a measure of apparent detergents. This determination depends on the formation of a blue color when methylene blue dye reacts with synthetic detergent compounds. Micrograms per gram (UG/G, ug/g) is a unit expressing the concentration of a chemical element as the mass (micrograms) of the element sorbed per unit mass (gram) of sediment. Micrograms per kilogram (MG/KG, mg/kg) is a unit expressing the concentration of a chemical element as the mass (micrograms) of the element sorbed per unit mass (kilogram) of sediment. Micrograms per liter (UG/L, ug/L) is a unit expressing the concentration of chemical constituents in solution as mass (micrograms) of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to one milligram per liter. Milligrams per liter (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in solution. Milligrams per liter represent the mass of solute per unit volume (liter) of water. Concentration of suspended sediment also is expressed in mg/L, and is based on the mass of sediment per liter of water-sediment mixture. National Geodetic Vertical Datum of 1929 (NGVD) is a geodetic datum derived from a general adjustment of the first order level nets of both the United States and Canada. It was formerly called "Sea Level Datum of 1929" or "mean sea level" in this series of reports. Although the datum was derived from the average sea level over a period of many years at 26 tide stations along the Atlantic, Gulf of Mexico, and Pacific Coasts, it does not necessarily represent local mean sea level at any particular place. Organism is any living entity, such as an insect, phytoplankter, or zooplankter. Organism count/area refers to the number of organisms collected and enumerated in a sample and adjusted to the number per area habitat, usually square meters (m²), acres, or hectares. Periphyton benthic organisms, and macrophytes are expressed in these terms. Organism count/volume refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliters (mL) or liters (L). Numbers of planktonic organisms can be expressed in these terms. Total organism count is the total number of organisms collected and enumerated in any particular sample. Parameter code numbers are unique five-digit code numbers assigned to each parameter placed into storage. These codes are assigned by the Environmental Protection Agency and are also used to identify data exchanged among agencies. <u>Partial-record station</u> is a particular site where limited streamflow and(or) water-quality data are collected systematically over a period of years for use in hydrologic analyses. <u>Particle size</u> is the diameter, in millimeters (mm), of suspended sediment or bed material determined by either sieve or sedimentation methods. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube) determine fall diameter of particles in distilled water (chemically dispersed). <u>Particle-size classification</u> used in this report agrees with recommendations made by the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows: | Classification | Size (mm) | Method of analysis | |--------------------------------|--|--| | Clay
Silt
Sand
Gravel | 0.00024 - 0.004
.004062
.062 - 2.0
2.0 - 64.0 | Sedimentation. Sedimentation. Sedimentation or sieve. Sieve. | The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. Most of the organic material is removed and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. <u>Percent composition</u> is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, mass or volume. <u>Periphyton</u> is the assemblage of microorganisms attached to and growing upon solid surfaces. While <u>primarily</u> consisting of algae, they also include bacteria, fungi, protozoa, rotifers, and other small organisms. Periphyton is a useful indicator of water quality. <u>Pesticides</u> are chemical compounds used to control undesirable plants and animals. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides. Insecticides and herbicides, which control insects and plants respectively, are the two categories reported. Picocurie (PC, pCi) is one trillionth (1 x 10^{-12}) of the amount of radioactivity represented by a curie (Cl). A curie is the amount of radioactivity that yields 3.7 x 10^{10} radioactive disintegrations per second. A picocurie yields 2.22 dpm (disintegrations per minute). $\underline{\text{Plankton}}$ is the community of suspended, floating, or weakly swimming organisms that live in the open water of lakes and rivers. Phytoplankton is the plant part of the plankton. They are usually microscopic and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment, and are commonly known as algae. Blue-green algae are a group of phytoplankton organisms having a blue pigment, in addition to the green pigment called chlorophyll. Blue-green algae often cause nuisance conditions in water. <u>Diatoms</u> are the unicellular or colonial algae having a siliceous shell. Their concentrations are expressed as number of cells/mL of sample. Green algae have chlorophyll pigments similar in color to those of higher green plants. Some forms produce algal mats or floating "moss" in lakes. Their concentrations are expressed as number of
cells/mL of sample. Zooplankton is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column, and are often large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton community is dominated by small crustaceans and rotifers. <u>Polychlorinated biphenyls</u> (PCBs) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organochlorine insecticides. <u>Primary productivity</u> is a measure of the rate at which new organic matter is formed and accumulated through photosynthetic and chemosynthetic activity of producer organisms (chiefly green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated by the plants (carbon method). Milligrams of carbon per area or volume per unit time [mg $C/(m^2 \cdot time)$ for periphyton and macrophytes and mg $C/(m^3 \cdot time)$ for phytoplankton] are units for expressing primary productivity. They define the amount of carbon dioxide consumed as measured by radioactive carbon (carbon 14). The carbon 14 method is of greater sensitivity than the oxygen light and dark bottle method, and is preferred for use in unenriched waters. Unit time may be either the hour or day, depending on the incubation period. Milligrams of oxygen per area or volume per unit time [mg $0_2/(m^2 \cdot time)$ for periphyton and macrophytes and mg $0_2/(m^3 \cdot time)$ for phytoplankton] are the units for expressing primary productivity. They define production and respiration rates as estimated from changes in the measured dissolved oxygen concentration. The oxygen light and dark bottle method is preferred if the rate of primary production is sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period. Recoverable from bottom material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of only readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. Runoff in inches (IN, in) shows the depth to which the drainage area would be covered if all the runoff for a given time period were uniformly distributed on it. <u>Sediment</u> is solid material that originates mostly from disintegrated rocks and is transported by, suspended in, or deposited from water; it includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are influenced by environmental factors. Some major factors are degree of slope, length of slope, soil characteristics, land usage, and quantity and intensity of precipitation. Suspended sediment is the sediment that at any given time is maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid. <u>Suspended-sediment concentration</u> is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 ft above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L). ## WATER RESOURCES DATA FOR MINNESOTA, 1982 Suspended-sediment discharge (tons/day) is the rate at which dry weight of sediment passes a section of a stream or is the quantity of sediment, as measured by dry weight or volume, that passes a section in a given time. It is computed by multiplying discharge times mg/L times 0.0027. Suspended-sediment load is quantity of suspended sediment passing a section in a specified period. Total sediment discharge (tons/day) is the sum of the suspended-sediment discharge and the bed-load discharge. It is the total quantity of sediment, as measured by dry weight or volume, that passes a section during a given time. $\underline{\text{Mean concentration}}$ is the time-weighted concentration of suspended sediment passing a stream section during a 24-hour day. Solute is any substance derived from the atmosphere, vegetation, soil, or rocks that is dissolved in water. Specific conductance is a measure of the ability of a water to conduct an electrical current. It is expressed in micromhos per centimeter at 25°C. Specific conductance is related to the type and concentration of ions in solution and can be used for appoximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is about 65 percent of the specific conductance (in micromhos). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water. Stage-discharge relation is the relation between gage height (stage) and volume of water per unit of time, flowing in a channel. Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation. Substrate is the physical surface upon which an organism lived. Natural substrates refers to any naturally occurring emersed or submersed solid surface, such as a rock or tree, upon which an organism lived. Artificial substrate is a device which is purposely placed in a stream or lake for colonization of organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is taken. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and miltiplate samplers (made of hardboard) for benthic organism collection, and plexiglass strips for periphyton collection. Surface area of a lake is that area outlined on the latest USGS topographic map as the boundary of the lake and measured by a planimeter in acres. In localities not covered by topographic maps, the areas are computed from the best maps available at the time planimetered. All areas shown are those for the stage when the planimetered map was made. Surficial bed material is that part (0.1 to 0.2 ft) of the bed material that is sampled using U.S. Series Bed-Material Samplers. <u>Suspended</u> (as used in tables of chemical analyses) refers to the amount (concentration) of the total concentration in a water-sediment mixture. The water-sediment mixture is associated with (or sorbed on) that material retained on a 0.45 micrometer filter. Suspended, recoverable is the amount of a given constituent that is in solution after the part of a representative water-suspended sediment sample that is retained on a 0.45 um membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. Determinations of "suspended, recoverable" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) <u>dissolved</u> and (2) <u>total recoverable</u> concentrations of the constituent. <u>Suspended</u>, total is the total amount of a given constituent in the part of a representative water-suspended sediment sample that is retained on a 0.45 um membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total." Determinations of "suspended, total" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total concentrations of the constituent. Taxonomy is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchical scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, Hexagenia limbata is the following: Kingdom....Animal Phylum...Arthropoda Class...Insects Order...Ephemeroptera Family...Ephermeridae Genus...Hexageria Species Hexagenia limbata Time-weighted average is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and
dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water that would be contained in a vessel or reservoir that had received equal quantities of water from the stream each day for the year. Tons per acre-foot indicates the dry mass of dissolved solids in 1 acre-foot of water. It is computed by multiplying the concentration in milligrams per liter by 0.00136. $\underline{\text{Tons per day}}$ is the quantity of substance in solution or suspension that passes a stream section during a 24-hour day. Total is the total amount of a given constituent in a representative water-suspended sediment sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determines all of the constituent in the sample.) Total in bottom material is the total amount of a given constituent in a representative sample of bottom material. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total in bottom material." Total load (tons) is the total quantity of any individual constituent, as measured by dry mass or volume, that is dissolved in a specific amount of water (discharge) during a given time. It is computed by multiplying the total discharge, times the mg/L of the constituent, times the factor 0.0027, times the number of days. Total recoverable refers to the amount of a given constituent that is in solution after a representative water-suspended sediment sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent percent in the dissolved and suspended phases of the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. Weighted average is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharge. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir. $\underline{\text{WDR}}$ is used as an abbreviation for "Water-Data Report" in reference to published reports beginning in 1975. $\underline{\mathtt{WRD}}$ is used as an abbreviation for "Water-Resources Data" in the REVISED RECORDS paragraph to refer to State annual basic-data reports published before 1975. WSP is used as an abbreviation for "Water-Supply Paper" in references to previously published reports. #### DOWNSTREAM ORDER AND STATION NUMBER Since October 1, 1950, the order of listing hydrologic-station records in Survey reports is in a downstream direction along the main stream. All stations on a tributary entering upstream from a main-stream station are listed before that station. A station on a tributary that enters between two main-stream stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary on which a station is situated with respect to the stream to which it is immediately tributary is indicated by an indention in a list of stations in the front of the report. Each indention represents one rank. This downstream order and system of indention show which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated. As an added means of identification, each hydrologic station and partial-record station has been assigned a station number. These are in the same downstream order used in this report. In assigning station numbers, no distinction is made between partial-record stations and other stations; therefore, the station number for a partial-record station indicates downstream-order position in a list made up of both types of stations. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete 8-digit number for each station such as 05041000, which appears just to the left of the station name, includes the 2-digit part number "05" plus the 6-digit downstream order number "041000". #### NUMBERING SYSTEM FOR WELLS AND MISCELLANEOUS SITES The 8-digit downstream order station numbers are not assigned to wells and miscellaneous sites where only random water-quality samples or discharge measurements are taken. The well and miscellaneous site numbering system of the U.S. Geological Survey is based on the grid system of latitude and longitude. The system provides the geographic location of the well or miscellaneous site and a unique number for each site. The number consists of 15 digits. The first 6 digits denote the degrees, minutes, and seconds of latitude, the next 7 digits denote degrees, minutes, and seconds of longitude, and the last 2 digits (assigned sequentially) identify the wells or other sites within a 1-second grid. See figure 4 below. Each well site is also identified by a local well number which consists of township, range, and section numbers, three letters designating 1/4, 1/4 section location, and a two digit sequential number. Figure 4.--Example of system for numbering well and miscellaneous sites #### SPECIAL NETWORKS AND PROGRAMS Hydrologic bench-mark station is one that provides hydrologic data for a basin in which the hydrologic regimen will likely be governed solely by natural conditions. Data collected at a benchmark station may be used to separate effects of natural from manmade changes in other basins which have been developed and in which the physiography, climate, and geology are similar to those in the undeveloped bench-mark basin. National stream-quality accounting network (NASQAN) is a data collection network designed by the U.S. Geological Survey to meet many of the information demands of agencies or groups involved in national or regional water-quality planning and management. Both accounting and broad-scale monitoring objectives have been incorporated into the network design. Areal configuration of the network is based on river-basin accounting units (identified by 8-digit hydrologic-unit numbers) designated by the Office of Water Data Coordination in consultation with the Water Resources Council. Primary objectives of the network are (1) to depict areal variability of streamflow and water-quality conditions nationwide on a year-by-year basis and (2) to detect and assess long-term changes in streamflow and stream quality. <u>Pesticide program</u> is a network of regularly sampled water-quality stations where samples are collected to determine the concentration and distribution of pesticides in streams where potential contamination could result from the application of the commonly used insecticides and herbicides. Operation of the network is a Federal interagency activity. Radiochemical program is a network of regularly sampled water-quality stations where samples are collected to be analyzed for radiosotopes. The streams that are sampled represent major drainage basins in the conterminous United States. Tritium network is a network of stations which has been established to provide base line information on the occurrence of tritium in the Nation's surface waters. In addition to the surfacewater stations in the network, tritium data are also obtained at a number of precipitation stations. The purpose of the precipitation stations is to provide an estimate sufficient for hydrologic studies of the tritium input to the United States. #### EXPLANATION OF STAGE AND WATER-DISCHARGE RECORDS #### COLLECTION AND COMPUTATION OF DATA The base data collected at gaging stations consist of records of stage and measurements of discharge of streams or canals, and stage, surface area, and contents of lakes or reservoirs. In addition, observations of factors affecting the stage-discharge relation or the stage-capacity relation, weather records, and other information are used to supplement base data in determining the daily flow or volume of water in storage. Records of stage are obtained from either direct readings on a nonrecording gage or from a water-stage recorder that gives either a continuous graph of the fluctuations or a tape punched at selected time intervals. Measurements of discharge are made with a current meter, using the general methods adopted by the Geological Survey. These methods are described in standard text-books, in Water-Supply Paper 888, and in U.S. Geological Survey Techniques of Water-Resources Investigations, book 3, chapter A6. For stream-gaging stations, rating tables giving the discharge for any stage are prepared from stage-discharge relation curves. If extensions to the rating curves are necessary to express discharge greater
than measured, they are made on the basis of indirect measurements of peak discharge (such as slope-area or contracted-opening measurements, computation of flow over dams or weirs), step-backwater techniques, velocity-area studies, and logarithmic plotting. The daily mean discharge is computed from gage heights and rating tables, then the monthly and yearly mean discharges are computed from the daily figures. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is computed by the shifting-control method, in which correction factors based on individual discharge measurements and notes by hydrologists and observers are used in applying the gage heights to the rating tables. If the stage-discharge relation for a station is temporarily changed by the presence of aquatic growth or debris on the control, the daily mean discharge is computed by what is basically the shifting-control method. At some stream-gaging stations the stage-discharge relation is affected by the backwater from reservoirs, tributary streams, or other sources. This necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in computing discharge. The slope or fall is obtained by means of an auxiliary gage set at some distance from the base gage. At some stations the stage-discharge relation is affected by changing stage; at these stations the rate of change in stage is used as a factor in computing discharge. At some northern stream-gaging stations the stage-discharge relation is affected by ice in the winter, and it becomes impossible to compute the discharge in the usual manner. Discharge for periods of ice effect is computed on the basis of gage-height record and occasional winter discharge measurements. Consideration is given to the available information on temperature and precipitation, notes by gage observers and hydrologists, and comparable records of discharge for other stations in the same or nearby basins. For a lake or reservoir station, capacity tables giving the contents for any stage are prepared from stage-area relation curves defined by surveys. The application of the stage to the capacity table gives the contents, from which the daily, monthly, or yearly change in contents is computed. If the stage-capacity curve is subject to changes because of deposition of sediment in the reservoir, periodic resurveys of the reservoir are necessary to define new stage-capacity curves. During the period between reservoir surveys the computed contents may be increasingly in error due to the gradual accumulation of sediment. For some gaging stations there are periods when no gage-height record is obtained or the recorded gage height is so faulty that it cannot be used to compute daily discharge or contents. This happens when the recorder stops or otherwise fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods the daily discharges are estimated on the basis of recorded range-in-stage, prior and subsequent records, discharge measurements, weather records, and comparison with records for other stations in the same or nearby basins. Likewise daily contents may be estimated on the basis of operator's log, prior and subsequent records, inflow-outflow studies, and other information. The data in this report generally comprise a description of the station and tabulations of daily and monthly figures. For gaging stations on streams or canals a table showing the daily discharge and monthly and yearly discharge is given. For gaging stations on lakes and reservoirs a monthly summary table of stage and contents or a table showing the daily contents is given. Tables of daily mean gage heights are included for some streamflow stations and for some reservoir stations. Records are published for the water year, which begins on October 1 and ends on September 30. The description of the gaging station gives the location, drainage area, period of record, notations of revisions of previously published records, type and history of gages, general remarks, average discharge, and extremes of discharge or contents. The location of the gaging station and the drainage area are obtained from most accurate maps available. River mileage, given under "LOCATION" for some stations, is that determined and used by the Corps of Engineers or other agencies. Periods for which there are published records for the present station or for stations generally equivalent to the present one are given under "PERIOD OF RECORD." Previously published streamflow records of some stations have been found to be in error on the basis of data or information later obtained. Revisions of such records are usually published along with the current records in one of the annual or compliation reports. In order to make it easier to find such revised records, a paragraph headed "REVISED RECORDS" has been added to the description of all stations for which revised records have been published. Listed herein are all the reports in which revisions have been published, each followed by the water years for which figures are revised in that report. In listing the water years only one number is given; for instance, 1965 stands for the water year October 1, 1964, to September 30, 1965. If no daily, monthly, or annual figures of discharge are affected by the revision, the fact is brought out by notations after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak discharges were revised. If the drainage area has been revised, the report in which the revised figure was first published is given. It should be noted that for all stations for which cubic feet per second per square mile and runoff in inches are published, a revision of the drainage area necessitates corresponding revision of all figures based on the drainage area. Revised figures of cubic feet per second per square mile and runoff in inches resulting from a revision of the drainage area only are usually not published in the annual series of reports. The type of gage currently in use; the datum of the present gage referred to National Geodetic Vertical Datum; and a condensed history of the types, locations, and datums of previous gages used during the period of record are given under "GAGE." National Geodetic Vertical Datum is explained in "DEFINITION OF TERMS." Information pertaining to the accuracy of the discharge records and to conditions which affect the natural flow of the gaging station is given under "REMARKS." For reservoir stations, information on the dam forming the reservoir, the capacity, outlet works and spillway, and purpose and use of the reservoir is given under "REMARKS." The average discharge for the number of years indicated is given under "AVERAGE DISCHARGE"; it is not given for stations having fewer than 5 complete years of record or for stations where changes in water development during the period of record cause the figure to have little significance. In addition, the median of yearly mean discharges is given for stream-gaging stations having 10 or more complete years of record if the median differs from the average by more than 10 percent. Under "EXTREMES" are given first, the extremes for the period of record, second, information available outside the period of record, and last, those for the current year. Unless otherwise qualified, the maximum discharge (or contents) is the instantaneous maximum corresponding to the crest stage obtained by use of a water-stage recorder (graphic or digital), a crest-stage gage, or a nonrecording gage read at the time of crest. If the maximum gage height did not occur on the same day as the maximum discharge (or contents), it is given separately. Similarly, the minimum is the instantaneous minimum unless otherwise qualified. For some stations, peak discharges are listed with "EXTREMES FOR CURRENT YEAR". If they are, all independent peaks above the selected base are published in tabular format with the time of occurrence and corresponding gage heights, including the maximum for the year. The base discharge, which is given in the table heading, is selected so that an average of about three peaks a year will be presented. Peak discharges are not published for any canals, ditches, drains, or for any stream for which the peaks are subject to substantial control by man. Time of day is expressed in 24-hour local standard time; for example, 12:30 a.m. is 0030, 1:30 p.m. is 1330. The minimums for these stations are published in a separate paragraph following the table of peaks. The daily table for stream-gaging stations gives the mean discharge for each day and is followed by monthly and yearly summaries. In the monthly summary below the daily table, the line headed "TOTAL" gives the sum of the daily figures. The line headed "MEAN" gives the average flow in cubic feet per second during the month. The lines headed "MAX" and "MIN" give the maximum and minimum daily discharges, respectively, for the month. Discharge for the month also may be expressed in cubic feet per second per square mile (line headed "CFSM"), or in inches (line headed "IN"), or in acre-feet (line headed "AC-FT"). Figures for cubic feet per second per square mile and runoff in inches are omitted if there is extensive regulation or diversion, if the drainage area includes large noncontributing areas, or if the average annual rainfall over the drainage basin is usually less than 20 inches. In the yearly summary below the monthly summary, the figures shown are the appropriate daily discharges for the calendar and water years. Footnotes to the table of daily discharge are introduced by the word "NOTE". Footnotes are used to indicate periods for which the discharge is computed or estimated by special
methods because of no gage-height record, backwater from various sources, or other unusual conditions. Periods of no gage-height record are indicated if the period is continuous for a month or more or includes the maximum discharge for the year. Periods of backwater from an unusual source, of indefinte stage-discharge relation, or of any other unusual condition at the gage site are indicated only if they are a month or more in length and the accuracy of the records is affected. Days on which the stage-discharge relation is affected by ice are not indicated. The methods used in computing discharge for various unusual conditions have been explained in preceding paragraphs. For most gaging stations on lakes and reservoirs the data presented comprise a description of the station and a monthly summary table of stage and contents. For some reservoirs a table showing daily contents or stage is given. Data collected at partial-record stations follow the information for continuous record sites. Data for partial-record discharge stations are presented in two tables. The first is a table of discharge measurements at low-flow partial-record stations, and the second is a table of annual maximum stage and discharge at crest-stage stations. The tables of partial-record stations are followed by a listing of discharge measurements made at sites other than continuous-record or partial-record stations. Occasionally, a series of discharge measurements are made within a short time period to investigate the seepage gains or losses along a reach of a stream or to determine the low-flow characteristics of an area. Such measurements are also given in special tables following the tables of partial-record stations. #### ACCURACY OF FIELD DATA AND COMPUTED RESULTS The accuracy of streamflow data depends primarily on (1) the stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements, and (2) the accuracy of observations of stage, measurements of discharge, and interpretations of records. The station description under "REMARKS" states the degree of accuracy of the records. "Excellent" means that about 95 percent of the daily discharges are within 5 percent; "good," within 10 percent; and "fair," within 15 percent. "Poor" means that daily discharges have less than "fair" accuracy. Figures of daily mean discharge in this report are shown to the nearest hundredth of a cubic foot per second for discharges of less than 1 $\rm ft^3/s$; to tenths between 1.0 and 10 $\rm ft^3/s$; to whole numbers between 10 and 1,000 $\rm ft^3/s$; and to 3 significant figures above 1,000 $\rm ft^3/s$. The number of significant figures used is based solely on the magnitude of the figure. The same rounding rules apply to discharge figures listed for partial-record stations. Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, figures of cubic feet per second per square mile and of runoff in inches are not published unless satisfactory adjustments can be made for diversions, for changes in contents of reservoirs, or for other changes incident to use and control. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents, unless it is so stated. Even at those stations where adjustments are made, large errors in computed runoff may occur if adjustments or losses are large in comparison with the observed discharge. #### OTHER DATA AVAILABLE Information of a more detailed nature than that published for most of the gaging stations such as observations of water temperatures, discharge measurements, gage-height records, and rating tables is on file in the district office. Also most gaging-station records are available in computer-usable form and many statistical analyses have been made. Information on the availability of unpublished data or statistical analyses may be obtained from the district office. RECORDS OF DISCHARGE COLLECTED BY AGENCIES OTHER THAN THE GEOLOGICAL SURVEY The National Water Data Exchange, Water Resources Division, U.S. Geological Survey, National Center, Reston, VA 22092, maintains an index of all discharge measurement sites in the State. Information on records available at specific sites can be obtained upon request. #### EXPLANATION OF WATER-QUALITY RECORDS #### COLLECTION AND EXAMINATION OF DATA Surface-water samples for analyses usually are collected at or near gaging stations. The quality-of-water records are given immediately following the discharge records at these stations. The descriptive heading for water-quality records gives the period of record for all water-quality data, the period of daily record for parameters that are measured on a daily basis (specific conductance, pH, dissolved oxygen, water temperature, sediment discharge, etc.), extremes for the period of daily record, extremes for the current year, and general remarks. For ground-water records, no descriptive statements are given; however, the well number, depth of well, date of sampling and (or) other pertinent data are given in the table containing the chemical analyses of the ground water. #### WATER ANALYSIS Most methods for collecting and analyzing water samples are described in the U.S. Geological Survey Techniques of Water-Resources Investigations listed on a following page. One sample can define adequately the water quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through several vertical sections to obtain a representative sample needed for an accurate mean concentration and for use in calculating load. Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. In the rare case where an apparent inconsistency exists between a reported pH value and the relative abundance of carbon dioxide species (carbonate and bicarbonate), the inconsistency is the result of a slight uptake of carbon dioxide from the air by the sample between measurement of pH in the field and determination of carbonate and bicarbonate in the laboratory. #### WATER RESOURCES DATA FOR MINNESOTA, 1982 For chemical-quality stations equipped with digital monitors, the records consist of daily maximum, minimum, and mean values for each constituent measured and are based upon hourly punches beginning at 0100 hours and ending at 2400 hours for the day of record. More detailed records (hourly values) may be obtained from the district office. #### WATER TEMPERATURE Water temperatures are measured at most of the water-quality stations. In addition, water temperatures are taken at time of discharge measurements for water-discharge stations. For stations where water temperatures are taken manually once or twice daily, the water temperatures are taken at about the same time each day. Large streams have a small daily temperature change; shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by waste-heat discharges. At stations where recording instruments are used, either mean temperatures or maximum and minimum temperatures for each day are published. #### SEDIMENT Suspended-sediment concentrations are determined from samples collected by using depth-integrating samplers. Samples usually are obtained at several verticals in the cross section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross sections. During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided-day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided-day method. For periods when no samples were collected, daily loads of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspended-sediment loads for other periods of similar discharge. At other stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observations, such data are useful in establishing seasonal relations between quality and streamflow in predicting long-term sediment-discharge characteristics of the stream. In addition to the records of the quantities of suspended sediment, records of the periodic measurements of the particle-size distribution of the suspended sediment and bed material are included. ## EXPLANATION OF GROUND-WATER LEVEL RECORDS ## COLLECTION OF THE DATA Only ground-water-level data from a basic network of observation wells are published herein. This basic network contains observation wells so located that the most significant data are obtained from the fewest wells in the most important aquifers. Each well is identified by means of (1) a 15-digit number that is based on
latitude and longitude and (2) a local number that is provided for local needs. See figure 4. Measurements are made in many types of wells, under varying conditions of access and at different temperatures, hence, neither the method of measurement nor the equipment can be standardized. At each observation well, however, the equipment and techniques used are those that will ensure that measurements at each well are consistent. Water-level measurements in this report are given in feet with reference to either NGVD of 1929 or land-surface datum (1sd). NGVD of 1929 is the datum plane on which the national network of precise levels is based; land-surface datum is a datum plane that is approximately at land surface at each well. If known, the altitude of the land-surface datum in NGVD of 1929 is given in the well description. The height of the measuring point (MP) above or below land-surface datum is given in each well description. Water levels in wells equipped with recording gages are reported for every fifth day and the end of each month (eom). Water levels are reported to as many significant figures as can be justified by the local conditions. For example, in a measurement of a depth to water of several hundred feet, the error in determining the absolute value of the total depth to water may be a few tenths of a foot, whereas the error in determining the net change of water level between successive measurements may be only a hundredth or a few hundredths of a foot. For lesser depths to water the accuracy is greater. Accordingly, most measurements are reported to a hundredth of a foot, but some are given only to a tenth of a foot or a larger unit. Hydrographs showing water-level fluctuations are included for 15 representative wells; 1 peat, 6 buried sand, and 8 surficial sand wells. Figure 5.--Location of water-discharge stations Figure 6.--Location of water-quality stations #### PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS Thirty-seven manuals by the U.S. Geological Survey have been published to date in the series on techniques describing procedures for planning and executing specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, Section A of Book 3 (Applications of Hydraulics) is on surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises. The reports listed below are for sale by the U.S. Geological Survey, Branch of Distribution, 604 South Pickett St., Alexandria, VA 22304 (authorized agent of the Superintendent of Documents, Government Printing Office). - When ordering any of these publications, please give the title, book number, chapter number, and "U.S. Geological Survey Techniques of Water-Resources Investigations". - 1-D1. - Water temperature—influential factors, field measurement, and data presentation, by H. H. Stevens, Jr., J. F. Ficke, and G. F. Smoot: USGS--TWRI Book 1, Chapter D1. 1975. 65 pages. Guidelines for collection and field analysis of ground-water samples for selected unstable constituents, by W. W. Wood: USGS--TWRI Book 1, Chapter D2. 1976. 24 pages. Application of surface geophysics to ground-water investigations, by A. A. R. Zohdy, G. P. Eaton, and D. R. Mabey: USGS--TWRI Book 2, Chapter D1. 1974. 116 pages. Application of borehole geophysics to water-resources investigations, by W. S. Keys and L. M. MacCary: USGS--TWRI Book 2, Chapter E1. 1971. 126 pages. General field and office procedures for indirect discharge measurements, by M. A. Benson and Tate Dalrymple: USGS--TWRI Rook 3. Chapter A1. 1967. 30 pages. 1-D2. - 2-D1 - 2-E1. - 3-A1. - Tate Dalrymple: USGS--TWRI Book 3, Chapter A1. 1967. 30 pages. Measurement of peak discharge by the slope-area method, by Tate Dalrymple and M. A. Benson: USGS--TWRI Book 3, Chapter A2. 1967. 12 pages. 3-A2. - Measurement of peak discharge at culverts by indirect methods, by G. L. Bodhaine: USGS--TWRI Book 3, Chapter A3. 1968. 60 pages. 3-A3. - Weasurement of peak discharge at width contractions by indirect methods, by H. F. Matthai: USGS--TWRI Book 3, Chapter A4. 1967. 44 pages. 3-A4. - Measurement of peak discharge at dams by indirect methods, by Harry Hulsing: USGS--TWRI Book 3, Chapter A5. 1967. 29 pages. 3-A5. - 3-A6. General procedure for gaging streams, by R. W. Carter and Jacob Davidian: USGS--TWRI Book 3, Chapter A6. 1968. 13 pages. - Stage measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3-A7. - 3. Chapter A7. 1968. 28 pages. Discharge measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3, Chapter A8. 1969. 65 pages. 3-A8. - Measurement of time of travel and dispersion in streams by dye tracing, by E. F. Hubbard, F. A. Kilpatrick, L. A. Martens, and J. F. Wilson, Jr.: USGS--TWRI Book 3, Chapter A9. 1982. 44 3-A9. - Measurement of discharge by moving-boat method, by G. F. Smoot and C. E. Novak: USGS--TWRI Book 3, Chapter All. 1969. 22 pages. 3-A11. - Aquifer-test design, observation, and data analysis, by R. W. Stallman: USGS--TWRI Book 3, 3-B1. Chapter B1. 1971. 26 pages. - 3-B2. - Introduction to ground-water hydraulics, a programed text for self-instruction, by G. D. Bennett: USGS--TWRI Book 3, Chapter B2. 1976. 172 pages. Type curves for selected problems of flow to wells in confined aquifers, by J. E. Reed: USGS--TWRI Book 3, Chapter B3. 1980. 106 pages. 3-B3. - Osas--IWRI book 3, Chapter 8. 1960. Tob pages. Fluvial sediment concepts, by H. P. Guy: USGS--TWRI Book 3, Chapter Cl. 1970. 55 pages. Field methods for measurement of fluvial sediment, by H. P. Guy and V. W. Norman: USGS--TWRI 3-C1. - 3-C2. Book 3, Chapter C2. 1970. 59 pages. Computation of fluvial-sediment discharge, by George Porterfield: USGS-TWRI Book 3, Chapter - 3-C3. C3. 1972. 66 pages. - Some statistical tools in hydrology, by H. C. Riggs: USGS--TWRI Book 4, Chapter Al. 1968. 39 4-A1. - 4-A2 4-R1 - Frequency curves, by H. C. Riggs: USGS--TWRI Book 4, Chapter A2. 1968. 15 pages. Low-flow investigations, by H. C. Riggs: USGS--TWRI Book 4, Chapter B1. 1972. 18 pages. Storage analyses for water supply, by H. C. Riggs and C. H. Hardison: USGS--TWRI Book 4, 4-B2. Chapter B2. 1973. 20 pages. - 4-B3. Regional analyses of streamflow characteristics, by H. C. Riggs: USGS--TWRI Book 4, Chapter B3. 1973. 15 pages. - 4-01. Computation of rate and volume of stream depletion by wells, by C. T. Jenkins: USGS--TWRI - 5-A1. - Book 4, Chapter D1. 1970. 17 pages. Methods for determination of inorganic substances in water and fluvial sediments, by M. W. Skougstad and others, editors: USGS-TWRI Book 5, Chapter A1. 1979. 626 pages. Determination of minor elements in water by emission spectroscopy, by P. R. Barnett and E. C. Mallory, Jr.: USGS-TWRI Book 5, Chapter A2. 1971. 31 pages. 5-A2. - 5-A3. - Methods for analysis of organic substances in water, by D. F. Goerlitz and Eugene Brown: USGS--TWRI Book 5, Chapter A3. 1972. 40 pages. Methods for collection and analysis of aquatic biological and microbiological samples, edited 5-A4. Methods for collection and analysis of aquatic biological and microolological samples, edited by P. E. Greeson, T. A. Ehlke, G. A. Irwin, B. W. Lium, and K. V. Slack: USGS--TWRI Book 5, Chapter A4. 1977. 332 pages. Methods for determination of radioactive substances in water and fluvial sediments, by L. L. Thatcher, V. J. Janzer, and K. W. Edwards: USGS--TWRI Book 5, Chapter A5. 1977. 95 pages. Laboratory theory and methods for sediment analysis, by H. P. Guy: USGS--TWRI Book 5, Chapter C1. 1969. 58 pages. - 5-A5. - 5-C1. - Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P. C. Trescott, G. F. Pinder, and S. P. Larson: USGS--TWRI Book 7, Chapter C1. 1976. 116 pages. 7-C1. - 7-C2. - 7-C3. - Computer model of two-dimensional solute transport and dispersion in ground water, by L. F. Konikow and J. D. Bredehoeft: USGS--TWRI Book 7, Chapter C2. 1978. 90 pages. A model for simulation of flow in singular and interconnected channels, by R. W. Schaffranek, R. A. Baltzer, and D. E. Goldberg: USGS--TWRI Book 7, Chapter C3. 1981. 110 pages. Methods of measuring water levels in deep wells, by M. S. Garber and F. C. Koopman: USGS--TWRI Book 8, Chapter A1. 1968. 23 pages Calibration and maintenance of vertical-axis type current meters, by G. F. Smoot and C. E. Novak: USGS--TWIR ROOM 8, Chapter R2. 1968. 15 pages 8-A1. - 8-B2. Novak: USGS--TWRI Book 8, Chapter B2. 1968. 15 pages. ## DISCONTINUED GAGING STATIONS The following continuous-record streamflow or stage stations in Minnesota have been discontinued or converted to partial-record stations. Daily streamflow or stage records were collected and published for the period of record shown for each station. | Station
number | Station name | Drainage
area (mi ²) | Period of record | |-------------------|---|-------------------------------------|---| | | Streams tributary to Lake Superior | | | | 04010000 | Pigeon River above mouth of Arrow River, MN | 256 | 1924-27 | | 04011000 | Brule River at mouth near Hoveland, MN | 248 | 1911† | | 04011500 | Devil Track River at mouth near Grand Marais, MN | a77 | 1911+ | | 04012000 | Cascade River at mouth near Grand Marais, MN | 111 | 1911† | | *04012500 | Poplar River at Lutsen, MN | 114 | 1911+,
1912-17,
1928-47,
1952-61 | | 04013000 | Cross River at Schroeder, MN | a91 | 1931-32 | | 04015000 | Beaver Creek (Beaver Bay Run) at Beaver Bay, MN | 126 | 1911-14,
1928-31 | | 04015455 | South Branch Partridge River near Babbitt, MN | 18.5 | 1977-80 | | 04015500 | Second Creek near Aurora, MN | 29 | 1955-80 | | 04017000 | Embarrass River at Embarrass, MN | 93.8 | 1942-64 | | 04018000 | Embarrass
River near McKinley, MN | 171 | 1953-62 | | 04018900 | East Two Rivers near Iron Junction, MN | 40.0 | 1966-79 | | 04019000 | West Two Rivers near Iron Junction, MN | 65.3 | 1953-62,
1965-79 | | 04019300 | West Swan River near Silica, MN | 16.3 | 1963-79 | | 04019500 | East Swan River near Toivola, MN | 112 | 1953-62,
1964-71 | | 04020000 | Swan River near Toivola, MN | 254 | 1952-61 | | 04021000 | Whiteface River below (at) Meadowlands, MN | 453 | 1909-17 | | 04023000 | Cloquet River at Independence, MN | a750 | 1909-17 | | 04023500 | St. Louis River near Cloquet, MN | a3,400 | 1903† | | 04024090 | Elim Creek near Holyoke, MN | 1.06 | 1976-78 | | 04024093 | Skunk Creek below Elim Creek near Holyoke, MN | 8.83 | 1976-78 | | | Red River of the North basin | | | | 05030000 | Otter Tail River near Detroit Lakes, MN | 270 | 1937-71 | | 05030500 | Otter Tail River at German Church, near Fergus Falls, MN | a1,230 | 1904-17 | | 05033900 | Pelican River at Detroit Lakes, MN | - | 1968-71,
1974-75 | | 05034100 | Pelican River at Detroit Lake outlet near Detroit Lakes, MN | - | 1968-71,
1972-75 | | 05035100 | Long Lake outlet near Detroit Lakes, MN | - | 1968–71 | | 05035200 | West Branch County Ditch No. 14 near Detroit Lakes, MN | - | 1968-71 | | 05035300 | East Branch County Ditch No. 14 near Detroit Lakes, MN | - | 1968–71 | | 05035500 | St. Clair Lake outlet near Detroit Lakes, MN | - | 1968–75 | | 05035600 | Pelican River at Muskrat Lake outlet near Detroit Lakes, MN | - | 1968–75 | | 05037100 | Pelican River at Sallie Lake outlet near Detroit Lakes, MN | - | 1968-75 | | 05039100 | Pelican River at Lake Melissa outlet near Detroit Lakes, MN | - | 1968-75 | | 05040000 | Pelican River near Detroit Lakes, MN | 123 | 1942-53 | | 05040500 | Pelican River near Fergus Falls, MN | 482 | 1909-12,
1942-80 | | 05045500 | Otter Tail River (Red River) near Fergus Falls, MN | a1,690 | 1909-10† | [&]quot;See footnotes at end of table." | Station
number | Station name | Drainage
area (mi ²) | Period of record | |-------------------|---|-------------------------------------|---| | | Red River of the North basinContinued | | | | 05046500 | Otter Tail River near Breckenridge, MN | a2,040 | 1931-32,
1939-46† | | 05047000 | Mustinka River (head of Bois de Sioux River) near Norcross, MN | - | 1940-47† | | 05047500 | Mustinka ditch above West Branch Mustinka River (Twelve Mile Creek) near Charlesville, MN | - | 1943-55 | | 05048000 | Mustinka ditch below West Branch Mustinka River (Twelve Mile Creek) near Charlesville, MN | - | 1943-55 | | 05048500 | West Branch Mustinka River (Twelve Mile Creek) below Mustinka ditch near Charlesville, MN | - | 1943-55 | | 05049000 | Mustinka River above (near) Wheaton, MN | 834 | 1915-24,
1930-58 | | 05050500 | Bois de Sioux River below Fairmont, ND | al,540 | 1919-44 | | 05051000 | Rabbit River at Cambell, MN | 266 | 1942-52 | | 05054020 | Red River of the North below Fargo, ND | - | 1969-78 | | *05061200 | Whiskey Creek at Barnesville, MN | 25.3 | 1964-66 | | 05063000 | Wild Rice River near Ada, MN | a1,100 | 1948-54 | | *05063500 | South Branch Wild River River near Borup, MN | 254 | 1944-49 | | 05067000 | Marsh River below Ada, MN | - | 1948-52 | | 05068000 | Sand Hill River at Beltrami, MN | a324 | 1943-58 | | 05068500 | Sand Hill ditch at Beltrami, MN | | 1943-58 | | 05075500 | Thief River near Gatske, MN | - | 1953-56 | | 05076500 | Red Lake River at Thief River Falls, MN | a3,450 | 1909-18,
1920-30 | | 05077000 | Clearwater River near Pinewood, MN | 132 | 1940-45 | | 05077500 | Clearwater River near Leonard, MN | 153 | 1934-47 | | *05077700 | Ruffy Brook near Gonvick, MN | 45.2 | 1960-78 | | *05078000 | Clearwater River at Plummer, MN | 512 | 1939-79 | | 05083500 | Red River of the North at Oslo, MN | 331,200 | 1936-37,
1941-43,
1945-60,
1973-78 | | 05085500 | Snake River at Warren, MN | a175 | 1945,
1953-56 | | 05086000 | Snake River at Alvarado, MN | 309 | 1945,
1953-56 | | 05086500 | Snake River near Argyle, MN | 481 | 1945 | | 05087000 | Middle River near Strandquist, MN | - | 1953-56 | | 05090500 | Tamarac River near Strandquist, MN | - | 1953-56 | | 05091000 | Tamarac River at Stephen, MN | - | 1945 | | 05091500 | Tamarac River near Stephen, MN | a320 | 1945,
1953-55 | | 05092500 | Two Rivers (Middle Fork Two rivers) near Hallock, MN | 131 | 1931-38 | | 05093000 | South Branch (South Fork) Two Rivers near Pelan, MN | 281 | 1928-38,
1953-56 | | *05094000 | South Branch Two Rivers at Lake Bronson, MN | 444 | 1928-36,
1937,
1941-43,
1944,
1945-47,
1953-81 | | 05094500 | South Branch Two Rivers (Two Rivers) at Hallock, MN | - | 1940-47 | [&]quot;See footnotes at end of table." ## DISCONTINUED GAGING STATIONS | Station
number | Station name | Drainage
area (mi ²) | Period of
record | |-------------------|---|-------------------------------------|---| | | Red River of the North basinContinued | | | | 05095000 | Two Rivers (South Branch Two Rivers) at Hallock, MN | 625 | 1911-14,
1929-30,
1938-39,
1941-43 | | 05095500 | Two Rivers below Hallock, MN | 644 | 1945-55 | | 05096000 | North Branch (North Fork) Two Rivers near Lancaster, MN | a32 | 1929-38,
1941-55 | | 05096500 | State Ditch 85 near Lancaster, MN | a95 | 1929-38,
1942-55 | | 05097000 | North Branch Two Rivers at Lancaster, MN | 209 | 1941-42,
1953-56 | | 05097500 | North Branch Two Rivers near Northcote, MN | 386 | 1941-42,
1945-51 | | 05098000 | Two Rivers below North Branch near Hallock, MN | a1,060 | 1941-43 | | 05103000 | Roseau River (at) near Malung, MN | 252 | 1928-46 | | 05104000 | South Fork (West Branch) Roseau River near Malung, MN | 312 | 1911-14,
1928-46 | | 05105000 | Roseau River at Roseau, MN | - | 1940-47 | | 05105500 | Roseau River near Roseau, MN | - | 1930-60 | | 05106000 | Sprague Creek near Sprague, Manitoba | 176 | 1928-81 | | 05107000 | Pine Creek near Pine Creek, MN | 74.6 | 1928-53 | | 05108000 | Roseau River near Badger, MN | - | 1928-69 | | 05108500 | Roseau River near Duxby, MN | - | 1929-51,
1952-56 | | 05109000 | Badger Creek near Badger, MN | a2.2 | 1929-30,
1931-38 | | 05109500 | Roseau River near Haug, MN | - | 1932-66 | | 05110000 | Roseau River at outlet of State Ditch 69 near Oak Point, MN | - | 1939-42 | | 05110500 | Roseau River at head of State Ditch 51 near Oak Point, MN | - | 1933-42 | | 05111000 | Roseau River at Oak Point, MN | - | 1933-39,
1941-60 | | 05112500 | Roseau River at International boundary, near Caribou, MN | a1,590 | 1933-69 | | | Lake of the Woods basin | 0.1.0 | 1050 (1 | | 05124500 | Isabella River near Isabella, MN | 341 | 1953-61,
1976-77 | | 05125000 | South Kawishiwi River near Ely, MN | - | 1953-61,
1976-78 | | 05125500 | Stony River near Isabella, MN | 180 | 1953-64 | | 05125550 | Stony River near Babbitt, MN | 219 | 1975-80 | | 05126000 | Dunka River near Babbitt, MN | 53.4 | 1951-62,
1975-80 | | 05126210 | South Kawishiwi River above White Iron Lake near Ely, MN | - | 1975-78 | | 05126500 | Bear Island River near Ely, MN | 68.5 | 1953-62,
1975-77 | | 05127205 | Burntside River near Ely, MN | - | 1967-78 | | 05127207 | Bjorkman's Creek near Ely, MN | 1.36 | 1972-78 | | 05127210 | Armstrong Creek near Ely, MN | 5.29 | 1967-78 | | 05127215 | Longstorff Creek near Ely, MN | 8.84 | 1967-78 | | 05127219 | Shagawa Lake tributary at Ely, MN | 1.84 | 1971-78 | | 05127220 | Burgo Creek near Ely, MN | 3.04 | 1967-78 | [&]quot;See footnotes at end of table." ## DISCONTINUED GAGING STATIONS | Station
number | Station name | Drainage
area (mi ²) | Period of record | |-------------------|---|-------------------------------------|-----------------------------------| | | Lake of the Woods basinContinued | | | | 05127230 | Shagawa River near Ely, MN | 99 | 1967-78 | | 05128340 | Pike River near Biwabik, MN | - | 1977-79 | | 05128500 | Pike River near Embarrass, MN | 115 | 1953-64,
1976-79 | | 05129000 | Vermilion River below Vermilion Lake near Tower, MN | 483 | 1911-17,
1928-81 | | 05129500 | Rainy River at International Falls, MN | 14,900 | 1905-60 | | 05130000 | Sturgeon River (Lake) at Side Lake, MN | _ | 1938-47 | | 05131000 | Dark River near Chisholm, MN | 50.6 | 1942-61,
1965-79 | | 05131800 | Deer Lake outlet (Deer Lake) near Effie, MN | - | 1937-39
1940-46 | | *05132000 | Big Fork River at Big Falls, MN | a1,460 | 1909-10†,
1911-12†,
1928-79 | | 05132500 | Big Fork River at Laurel, MN | - | 1909 | | 05133000 | Black River near Loman, MN | - | 1909 | | 05139500 | Warroad River near Warroad, MN | 162 | 1946-80 | | *05140000 | Bulldog Run near Warroad, MN | 14.2 | 1946-51,
1966-77 | | *05140500 | East Branch Warroad River near Warroad, MN | . 102 | 1946-54,
1966-77 | ^{*} Presently operated as high-flow partial-record station. † Stage records only. a Approximately. #### HYDROLOGIC-DATA STATION RECORDS #### STREAMS TRIBUTARY TO LAKE SUPERIOR # 04010500 PIGEON RIVER AT MIDDLE FALLS, NEAR GRAND PORTAGE, MN (International gaging station) LOCATION.--Lat 48°00'44", long 89°36'58", in SWANEA sec.24, T.64 N., R.6 E., Cook County, Hydrologic Unit 04010101, on the Grand Portage Indian Reservation, on right bank 400 ft (122 m) upstream from Middle Falls, 2.5 mi (4.0 km) upstream from Grand Portage Port of Entry, 3.5 mi (5.6 km) upstream from mouth, and 4.7 mi (7.6 km) northeast of village of Grand Portage. DRAINAGE AREA.--600 mi^2 (1,554 km^2). PERIOD OF RECORD.--June to October 1921, April to November 1922, March 1923 to current year. Published as "at International Bridge" April 1924 to September 1940; as "below International Bridge" October
1940 to September 1965. Monthly discharge only for some periods, published in WSP 1307. REVISED RECORDS.--WSP 744: 1927-28. WSP 804: 1934(M). WSP 974: Drainage area. WSP 1337: 1924(M), 1925, 1926-28(M), 1931(M), 1938(M), 1941(M), 1945-46(M), 1947, 1948(M), 1950(M). GAGE .-- Water-stage recorder. Datum of gage is 787.58 ft (240.054 m), National Geodetic Vertical Datum of 1929. Prior to Sept. 30, 1940, nonrecording gage at International Bridge, 5.8 mi (9.3 km) upstream at datum 102.24 ft (31.163 m) higher. Oct. 1, 1940, to Dec. 31, 1975, at present site at datum 2.00 ft (0.610 m) higher. REMARKS .-- Records good except those for winter period, which are fair. COOPERATION .-- This station is one of the international gaging stations maintained by the United States under agreement with Canada. AVERAGE DISCHARGE.--59 years (water years 1924-82), 503 ft3/s (14.24 m3/s), 11.38 in/yr (289 mm/yr). EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 11,000 ft³/s (312 m³/s) May 5, 1934, gage height, 7.6 ft (2.32 m), site and datum then in use, from rating curve extended above 7,000 ft⁵/s (198 m³/s); minimum daily, 1.0 ft³/s (0.028 m³/s) Jan. 15-21, 1977; minimum recorded gage height, 1.24 ft (0.378 m) Jan. 7, 8, 15, 1977, but may have been less during period of no gage-height record, Jan. 16 to Apr. 17, 1977. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 5,820 ft 3 /s (165 m 3 /s) Apr. 25, gage height, 10,39 ft (3.167 m), no other peak above base of 3,000 ft 3 /s (85.0 m 3 /s); minimum daily discharge, 80 ft 3 /s (2.27 m 3 /s) Dec. 10. | | | DISCHARGE | E, IN CUB | IC FEET | PER SECO | ND, WATER
MEAN VAL | R YEAR OCT
UES | OBER 1981 T | O SEPTE | MBER 1982 | | | |----------------------------------|--|--|--|---|----------------------------------|--|--|--|-----------------------------------|--|---|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 177 | 297 | 146 | 100 | 100 | 95 | 185 | 2330 | 837 | 247 | 268 | 152 | | 2 | 206 | 276 | 151 | 100 | 100 | 95 | 205 | 2210 | 814 | 236 | 259 | 153 | | 3 | 211 | 257 | 144 | 100 | 100 | 95 | 235 | 2070 | 774 | 239 | 246 | 158 | | 4 | 235 | 239 | 144 | 100 | 100 | 95 | 250 | 1980 | 712 | 271 | 235 | 164 | | 5 | 294 | 230 | 144 | 100 | 100 | 95 | 255 | 2110 | 663 | 326 | 227 | 157 | | 6 | 366 | 224 | 140 | 100 | 100 | 94 | 250 | 2100 | 615 | 392 | 228 | 143 | | 7 | 397 | 224 | 130 | 100 | 100 | 93 | 250 | 2020 | 577 | 897 | 293 | 133 | | 8 | 355 | 214 | 110 | 100 | 100 | 92 | 245 | 1800 | 551 | 897 | 350 | 124 | | 9 | 299 | 198 | 90 | 100 | 100 | 92 | 245 | 1590 | 555 | 721 | 339 | 118 | | 10 | 264 | 195 | 80 | 100 | 100 | 92 | 240 | 1770 | 576 | 616 | 317 | 119 | | 11 | 251 | 185 | 100 | 100 | 100 | 92 | 240 | 2100 | 575 | 617 | 284 | 117 | | 12 | 235 | 177 | 120 | 100 | 100 | 94 | 250 | 1990 | 550 | 598 | 254 | 125 | | 13 | 221 | 173 | 140 | 100 | 100 | 96 | 280 | 2130 | 501 | 625 | 229 | 152 | | 14 | 240 | 165 | 130 | 100 | 100 | 98 | 420 | 2430 | 475 | 634 | 221 | 203 | | 15 | 299 | 164 | 120 | 100 | 100 | 100 | 600 | 2190 | 462 | 633 | 212 | 224 | | 16 | 300 | 159 | 115 | 100 | 100 | 105 | 750 | 1960 | 456 | 583 | 204 | 202 | | 17 | 288 | 155 | 115 | 100 | 100 | 110 | 950 | 1810 | 442 | 535 | 197 | 188 | | 18 | 329 | 152 | 115 | 100 | 100 | 118 | 1300 | 2110 | 410 | 563 | 192 | 189 | | 19 | 348 | 152 | 110 | 100 | 100 | 122 | 1480 | 2220 | 388 | 538 | 186 | 203 | | 20 | 350 | 140 | 110 | 100 | 100 | 126 | 1420 | 2010 | 372 | 478 | 179 | 205 | | 21 | 321 | 122 | 110 | 100 | 100 | 130 | 1340 | 1790 | 369 | 423 | 179 | 200 | | 22 | 296 | 99 | 110 | 100 | 100 | 132 | 1320 | 1600 | 362 | 392 | 190 | 189 | | 23 | 272 | 124 | 110 | 100 | 100 | 134 | 2000 | 1450 | 350 | 368 | 192 | 176 | | 24 | 256 | 132 | 105 | 100 | 100 | 136 | 3370 | 1330 | 335 | 350 | 191 | 175 | | 25 | 250 | 139 | 105 | 100 | 95 | 138 | 5050 | 1230 | 326 | 329 | 192 | 180 | | 26
27
28
29
30
31 | 235
241
232
241
291
315 | 137
147
136
146
154 | 105
105
105
105
100 | 100
100
100
100
100 | 95
95
95
 | 138
140
144
148
154
162 | 5110
4010
3140
2640
2510 | 1150
1080
1020
967
925
882 | 314
293
281
273
261 | 317
313
338
341
308
287 | 186
180
171
168
159
153 | 183
174
165
165
166 | | TOTAL MEAN MAX MIN CFSM IN• | 8615
278
397
177
.46 | 5312
177
297
99
•30
•33 | 3614
117
151
80
•20
•22 | 3100
100
100
100
•17
•19 | 2780
99.3
100
95
.17 | 3555
115
162
92
•19
•22 | 40540
1351
5110
185
2.25
2.51 | 54354
1753
2430
882
2•92
3•37 | 14469
482
837
261
.80 | 14412
465
897
236
•78
•89 | 6881
222
350
153
•37
•43 | 5002
167
224
117
•28
•31 | | CAL YR
WTR YR | | | MEAN 4
MEAN 4 | | 3240
5110 | MIN 50
MIN 80 | CFSM .80
CFSM .74 | | | | | | #### 04014500 BAPTISM RIVER NEAR BEAVER BAY, MN LOCATION.--Lat 47°20'07", long 91°12'06", in SENNER sec.15, T.56 N., R.7 W., Lake County, Hydrologic Unit 04010101, on right bank 400 ft (122 m) upstream from bridge on U.S. Highway 61, 0.3 mi (0.5 km) upstream from mouth, 4 mi (6 km) northeast of Silver Bay, and 7 mi (11 km) northeast of village of Beaver Bay. DRAINAGE AREA .-- 140 mi² (363 km²). #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- October 1927 to current year. Monthly discharge only for some periods, published in WSP 1307. REVISED RECORDS. -- WSP 894: 1939. WSP 1337: 1933-34(M), 1935. GAGE.--Water-stage recorder. Datum of gage is 613.65 ft (187.041 m) National Geodetic Vertical Datum of 1919 (Corps of Engineers bench mark). Prior to Oct. 5, 1934, nonrecording gage, and Oct. 5, 1934 to Nov. 22, 1978, water-stage recorder at site 370 ft (113 m) downstream and at datum 3.68 ft (1.122 m) lower. REMARKS. -- Records good except those for winter period, which are fair. AVERAGE DISCHARGE.--55 years, 168 ft 3 /s (4.758 m 3 /s), 16.30 in/yr (414 mm/yr). EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 10,000 ft³/s (283 m³/s) Sept. 24, 1977, gage height, 8.33 ft (2.539 m) site and datum then in use, from highwater mark in well, from rating curve extended above 4,200 ft³/s (119 m³/s) on basis of slope-area measurement of peak flow; maximum gage height, 11.06 ft (3.371 m) Apr. 12, 1965, site and datum then in use, from floodmark (backwater from ice); no flow Jan. 14 to Mar. 2, 1977. EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 1,300 ft3/s (36.8 m3/s) and maximum (*): | | | Disci
(ft ³ /s) | harge | | height | |---------|------|-------------------------------|---------------------|--------|--------| | Date | Time | (ft ³ /s) | (m ³ /s) | (ft) | (m) | | | | | | | | | Apr. 25 | 0200 | *3750 | 106 | *11.32 | 3.450 | | May 5 | 1230 | 1830 | 51.8 | 9.68 | 2.950 | Minimum daily discharge, 19 ft 3 /s (0.54 m 3 /s) Feb. 21 to Mar. 12; minimum recorded gage height, 5.73 ft (1.747 m) Mar. 12, but may have been less during period of no gage-height record Jan. 17 to Mar. 9. | | | DISCHARG | E, IN CU | BIC FEET F | PER SECOND | , WATER
EAN VALUE | YEAR OCTO | BER 1981 | TO SEPTEM | BER 1982 | | | |----------------------------------|---|----------------------------------|----------------------------------|----------------------------------|---------------------------------------|-----------------------------------|---|---|---|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 387
400
285
281
294 | 125
114
105
100
95 | 50
50
49
46
48 | 29
29
28
28
27 | 20
20
20
20
20 | 19
19
19
19 | 200
250
280
300
250 | 631
564
507
808
1750 | 198
171
146
128
112 | 29
27
53
99
106 | 63
57
53
50
47 | 51
72
70
62
50 | | 6
7
8
9
10 | 278
242
189
152
154 | 89
84
80
71
67 | 48
48
47
46
45 | 27
26
26
25
24 | 20
20
20
20
20 | 19
19
19
19 | 200
170
150
130
120 | 1390
973
702
551
718 | 98
91
86
84
167 | 138
610
606
466
657 | 46
201
456
392
263 | 43
37
34
32
49 | | 11
12
13
14
15 | 168
151
159
433
399 | 65
63
62
62
63 | 45
44
44
43
42 | 24
23
23
22
22 | 20
20
20
20
20 | 19
19
23
24
23 | 110
130
150
200
270 | 900
799
1040
1060
854 | 152
153
129
107
99 | 634
713
851
974
690 | 172
122
96
85
71 | 109
209
515
413
316 | | 16
17
18
19
20 | 304
340
441
357
306 | 63
62
60
58
48 | 41
40
39
39
38 | 22
22
22
21
21 | 20
20
20
20
20 | 23
23
23
23
23 | 450
800
896
749
710 | 870
855
1250
1090
804 | 85
77
68
62
59 | 488
551
472
312
220 | 61
50
44
48
44 | 294
266
259
206
183 | | 21
22
23
24
25 | 270
219
178
151
140 | 52
56
56
54
51 | 37
36
36
35
34 | 21
21
21
21
21 |
19
19
19
19 | 23
24
26
27
27 | 679
858
1460
2450
3360 | 610
476
379
318
269 | 59
57
51
46
43 | 187
181
142
117
118 | 39
106
125
116
101 | 153
132
112
102
90 | | 26
27
28
29
30
31 | 121
119
119
127
136
135 | 51
51
51
51
51 | 34
33
32
32
31
30 | 21
21
21
21
20
20 | 19
19
19
 | 27
27
27
27
50
100 | 2440
1500
1060
856
734 | 232
196
168
151
186
212 | 38
34
31
36
33 | 104
85
69
63
68
68 | 80
67
57
50
49
47 | 82
74
70
70
72 | | TOTAL MEAN MAX MIN CFSM IN. | 7435
240
441
119
1•71
1•98 | 2060
68.7
125
48
.49 | 1262
40.7
50
30
.29 | 720
23.2
29
20
.17 | 552
19.7
20
19
.14
.15 | 798
25.7
100
19
.18 | 21912
730
3360
110
5.21
5.82 | 21313
688
1750
151
4.91
5.66 | 2700
90.0
198
31
.64
.72 | 9898
319
974
27
2.28
2.63 | 3258
105
456
39
•75
•87 | 4227
141
515
32
1.01
1.12 | | CAL YR | 1981 TOTAL | 64643.7 | MEAN | 177 MAX | 1370 1 | ITN Q 7 | CESM 1 | .26 TN | 17.18 | | | | CAL YR 1981 TOTAL 64643.7 MEAN 177 MAX 1370 MIN 9.7 CFSM 1.26 IN 17.18 WTR YR 1982 TOTAL 76135.0 MEAN 209 MAX 3360 MIN 19 CFSM 1.49 IN 20.23 NOTE. -- No gage-height record Jan. 17 to Mar. 9. # 04014500 BAPTISM RIVER NEAR BEAVER BAY, MN--Continued (National stream-quality accounting network station) # WATER-QUALITY RECORDS PERIOD OF RECORD .-- Water years 1968 to current year. PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: October 1980 to September 1982 (discontinued). WATER TEMPERATURES: October 1980 to September 1982 (discontinued). INSTRUMENTATION. -- Water-quality minimonitor since October 1980. REMARKS .-- Letter K indicates non-ideal colony count. EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum, 167 micromhos Feb. 18, 1981; minimum, 32 micromhos Apr. 25, 1982. WATER TEMPERATURES: Maximum, 26.5°C July 7, 1981; minimum, 0.0°C several days during winter period. EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum, 131 micromhos Mar. 31; minimum, 32 micromhos Apr. 25, 26. WATER TEMPERATURES: Maximum, 23.5°C July 6; minimum, 0.0°C several days during winter period. | | | | W F | TEK A | UALITY DA | TA, WATER | C YEAR O | OCTOBE | K 1901 | TO SEPTE | MBER 190 | 2 | | | |-----------|-----------|--|--|---|---|---|------------------------------------|--|---|---|---|---|--|-----| | DA | TE | TIME | FI
INS
TAN
(C | REAM-
LOW,
STAN-
HEOUS
FS) | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS)
(00095) | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(UMHOS)
(90095) | PH
(UNIT: | s) (u | PH
LAB
NITS)
0403) | TEMPER-
ATURE,
AIR
(DEG C)
(00020) | TEMPER-
ATURE
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | TUR-BID-
ITY
(NTU) | | | OCT | | - 1-1 | | | | - 0 | | | | | | | | | | JAN | | 1445 | | 266 | 54 | 58 | 7 | . 4 | 7.1 | 3.0 | 3.0 | 753 | | 0 | | 14
Mar | • • • | 1515 | | 22 | 125 | 104 | • | | 7.7 | -10.0 | .0 | 737 | 1.3 | | | | | 1040 | | 19 | 120 | 110 | 7 | .6 | 7.6 | -5.0 | .0 | 736 | 1.3 | | | | | 0945 | | 594 | 55 | 50 | 7 | . 4 | 7.0 | 1.0 | .0 | 749 | 1.4 | | | 22 | | 1000 | | 57 | 80 | 79 | 7 | .6 | 7.7 | 12.0 | 14.0 | 743 | 1.1 | | | AUG
10 | | 1130 | | 262 | 55 | 55 | 7 | .6 | 7.2 | 11.0 | 13.0 | 744 | 1.3 | | | DA | TE | OXYGEN
DIS-
SOLVE
(MG/L
(00300 | SC
SC
I, (F
C
ED SA | GEN,
DIS-
DLVED
PER-
CENT
ATUR-
PION) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | STREP-
TOCOCCI
FECAL,
KF AGAR
(COLS.
PER
100 ML)
(31673) | HARD
NESS
(MG/
AS
CACO | NO NO BO
L (| ARD-
ESS
NCAR-
NATE
MG/L
AS
CO3)
5902) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SORP-
TION
RATIO | | | OCT | | | | | | | | | | | | | | | | 21
JAN | ••• | 13. | 5 | 101 | K10 | 52 | | 30 | 8.0 | 7.9 | 2.6 | 3.1 | • | 3 | | 14
Mar | • • • | 13. | 9 | 98 | K5 | К8 | | 46 | 9.0 | 12 | 3.9 | 3.1 | | . 2 | | 10
APR | • • • | 13. | 4 | 95 | К4 | 56 | | 51 | 7.0 | 13 | 4.4 | 4.2 | · | 3 | | | | 14. | 2 | 99 | 8 | 60 | | 24 | 9.0 | 6.0 | 2.1 | 2.1 | | 2 | | | | 9. | 0 | 90 | K13 | 35 | | 37 | 6.0 | 9.6 | 3.1 | 3.1 | | 3 | | | ••• | 9. | 6 | 93 | 45 | 210 | | 31 | 9.0 | 8.4 | 2.5 | 1.7 | , . | .1 | | | DA | S
(
TE A | POTAS-
SIUM,
DIS-
SOLVED
MG/L
AS K) | ALK
LINI
LA
(MG
AS
CAC | TY SULF
B DIS
/L SOL
(MG
03) AS S | 3- DIS
VED SOI
4/L (MG | DE,
S-
LVED
H/L
CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) |) (MG
AS
SIO | VED DEG
VL DI
SOI
(MG | DUE SUM
80 CON
6. C TUE
IS- D
EVED SO
EVED (M | STI- I
NTS, SC
IS- (T
LVED F
G/L) I | JIDS,
DIS-
DLVED
CONS
PER
DAY)
D302) | | | | OCT | | | | | _ | | | | | _ | | | | | | JAN | | .2 | 22 | | 8.3 | 2.5 | . 2 | | .0 | 83 | | 59.6 | | | | 14
MAR | • • • | •3 | 37 | | 7.1 | 3.2 | • 2 | | .4 | 79 | 67 | 4.7 | | | | 10
APR | • • • | •3 | 44 | | 8.5 | 3.6 | •3 | . 1 | .4 | 90 | 75 | 4.6 | | | | 21
JUN | ••• | .6 | 15 | | 6.0 | 1.9 | .1 | | 9.4 | 70 | 37 1 | 12 | | | | | • • • | - 4 | 31 | | 5.0 | 2.1 | • 2 | ! | 7.6 | 53 | 50 | 8.2 | | | | | • • • | <.1 | 22 | | 5.0 | 1.9 | • 2 | ! | 9.5 | 100 | 43 | 70.7 | • | # 04014500 BAPTISM RIVER NEAR BEAVER BAY, MN--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | DA: | NO
S
(1 | ITRO-
GEN,
2+NO3
DIS-
OLVED
MG/L
S N)
0631) | NITR
GEN
AMMON
DIS
SOLV
(MG/
AS N | GEN, IA MONI ORGA ED TOT L (MO) AS | A +
NIC
AL
A/L
N) | PHOS
PHORU
TOTA
(MG/
AS I | JS,
AL
/L
P) | PHOS
PHORU
DIS
SOLV
(MG)
AS 1 | JS,
S-
/ED
/L
P) | PHOR PHOR ORT DIS SOLV (MG/AS P (006 | US,
HO,
ED
L | SEDI
MENT
SUS-
PENI
(MG, | r,
-
DED
/L) | SED:
MEN'
DI:
CHARC
SU:
PEN!
(T/D:
(801) | T,
S-
GE,
S-
DED
AY) | SIE | SP.
VE
AM.
NER
AN
MM | |---------------------------------|--|--|---|--|-------------------------------|---|-----------------------|--|------------------------------|---|-------------------------------|---|----------------------------|---|--|---------------------------------------|--| | | • • • | •29 | •0 | 40 | .22 | <.0 | 10 | <.0 | 010 | <. | 010 | | 14 | 10 | | | 93 | | | • • • | •35 | •0 | 70 | •39 | <.0 | 010 | <.0 | 10 | <. | 010 | | 11 | | .68 | | 98 | | 10 | • • • | .47 | .1 | 20 | .60 | <.0 | 10 | <.0 | 10 | <. | 010 | | 11 | | •57 | | 100 | | | • • • | .63 | .1 | 30 | .42 | .0 | 30 | •0 | 010 | <. | 010 | | 16 | 26 | | | 81 | | | ••• | <.10 | <.0 | 10 | .30 | <.0 | 10 | <.0 | 10 | <. | 010 | | 8 | 1 | • 3 | | 93 | | AUG
10 | • • • | <.10 | •0 | 80 | .70 | •0 | 20 | <.0 | 10 | <. | 010 | | 3 | 2 | •3 | | 82 | | DATE | TIME | TO
(U
AS | ENIC
TAL
G/L
AS) | ARSENIC DIS- SOLVED (UG/L AS AS) (01000) | TO'
RE
ER
(U | IUM,
TAL
COV-
ABLE
G/L
BA)
007) | AS | S - | TO
RE
ER
(U
AS | MIUM
TAL
COV-
ABLE
G/L
CD)
027) | D:
SOI
(U)
AS | MIUM
IS-
LVED
J/L
CD)
D25) | MI
TO
RE
ER
(U | RO-
UM,
TAL
COV-
ABLE
G/L
CR)
034) | (UC | JM,
S-
LVED
G/L
CR) | COBALT,
TOTAL
RECOV-
ERABLE
(UG/L
AS CO)
(01037) | | OCT
21 | 1445 | | 1 | 0 | | 100 | | 43 | | <1 | | <1 | 1 | 20 | | 10 | <1 | | JAN
14 | 1515 | | 2 | 1 | | 100 | | 11 | | 1 | | <1 | | 20 | | 10 | 1 | | APR
21 | 0945 | | 1 | 1 | | <100 | | 9 | | 1 | | <1 | | 20 | | 10 | <1 | | AUG
10 | 1130 | | 1 | 1 | | 100 | | 11 | | <1 | | 2 | | 30 | | 20 | <1 | | DATE | COBALT
DIS-
SOLVED
(UG/L
AS CO
(01035 | , TO
RE
ER
(U
) AS | PER,
TAL
COV-
ABLE
G/L
CU)
042) | COPPER, DIS- SOLVED (UG/L AS CU) (01040) | TO'
RE
ER
(U
AS | ON,
TAL
COV-
ABLE
G/L
FE)
045) | SOI
(UC
AS | ON,
IS-
LVED
3/L
FE)
046) | TO
RE
ER
(U
AS | AD,
TAL
COV-
ABLE
G/L
PB)
051) | SO1
(U)
AS | AD,
IS-
LVED
G/L
PB)
O49) | NE
TO
RE
ER
(U | NGA-
SE,
TAL
COV-
ABLE
G/L
MN)
055) | NES
DI
SOI
(UC | S-
LVED
3/L
MN) |
MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG)
(71900) | | OCT
21 | < | 1 | 9 | 6 | | 420 | | 330 | | 5 | | <1 | | 20 | | 5 | -4 | | JAN
14 | < | 1 | 8 | 4 | | 240 | | 190 | | 4 | | <1 | | <10 | | 3 | <.1 | | APR
21 | < | 1 | 14 | 6 | | 500 | | 190 | | 5 | | 3 | 1 | 30 | | 11 | | | AUG
10 | < | 1 | 7 | 1 | | 760 | | 490 | | 5 | | 3 | | 20 | | 6 | .1 | | JAN
14.
APR
21.
AUG | SE S | RCURY
DIS-
OLVED
UUG/L
S HG)
1890) | | L NICK V- DIS LE SOI L (UG I) AS 7) (010 | S-
VED
VL
NI) | SELE
NIUM
TOTA
(UG/
AS S
(0111 | i,
AL
'L
SE) | SELI
NIUI
DIS
SOLV
(UG,
AS S | M,
S-
/ED
/L
SE) | SILV
TOT
REC
ERA
(UG
AS
(010 | AL
OV-
BLE
/L
AG) | SILVI
DIS
SOLV
(UG,
AS / | S-
VED
VL
AG) | ZING
TOT:
RECC
ERAI
(UG,
AS: | AL
OV-
BLE
/L
ZN)
92)
50
60
20 | ZIN
DI
SOL
(UG
AS
(O10 | S=
VED
/L
ZN)
90)
40
13 | | 10 | • • • | <.1 | | 7 | 1 | | <1 | | <1 | | <1 | | <1 | | 40 | | 10 | # 04014500 BAPTISM RIVER NEAR BEAVER BAY, MN---Continued SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | DAY | MAX | MIN | MEAN | |---|--|--|---|--|--|--|---|--|---|--|---|--| | | | OCTOBE | R | | NOVEMBE | CR . | | DECEME | BER | | JANUA | RY | | 1
2
3
4
5 | 86
72
66
69
68 | 72
66
64
63
65 | 81
69
65
67
66 | 64
65
69
70
71 | 63
63
64
69
68 | 63
64
68
70
70 | 88
88
82
85
85 | 81 | 86
85
82
80
84 | 98
99
97
96
97 | 96
97
96
96
95 | 97
98
97
96
96 | | 6
7
8
9
10 | 66
64
64
65
68 | 64
63
63
64 | 65
64
63
64
66 | 69
70
71
74
75 | 68
68
70
70
72 | 68
69
70
72
73 | 85
85
92
88
92 | 71
82 | 84
84
80
84
89 | 96
95
95
95
96 | 95
94
94
94 | 95
95
95
95 | | 11
12
13
14
15 | 68
67
68
70
62 | 65
65
62
60 | 66
66
66
61 | 75
76
78
77
76 | 71
72
76
76
75 | 74
73
77
76
76 | 93
89
87
88
90 | 86
86 | 91
88
87
87
89 | 98
99
101
101
101 | 96
97
99
100
99 | 97
98
100
100 | | 16
17
18
19
20 | 61
69
65
59
58 | 59
60
58
57
57 | 60
64
61
58
58 | 77
75
76
77
80 | 74
74
75
75
72 | 76
75
75
76
78 | 93
95
97
100
101 | 95
9 7 | 91
94
96
99
100 | 99
100
101
102
102 | 98
98
100
101
101 | 99
99
101
102
102 | | 21
22
23
24
25 | 57
58
59
60
61 | 56
56
57
57
58 | 57
57
58
59
60 | 76
89
91
87
83 | 66
67
85
83
81 | 71
76
88
85
82 | 101
101
104
107
112 | 100
100
103 | 100
100
102
105
107 | 103
103
103
101
102 | 102
102
101
100
100 | 102
102
102
101
101 | | 26
27
28
29
30
31 | 65
64
66
66
64 | 61
64
65
63
62 | 63
65
66
64
63 | 87
84
83
85
86 | 81
82
80
81
83 | 84
83
82
83
84 | 101
101
99
98
98 | 99 | 100
100
98
98
98
98 | 101
102
102
100
100 | 100
99
99 | 101
101
101
100
99
99 | | MONTH | 86 | 56 | 64 | 91 | 63 | 75 | 112 | 71 | 92 | 103 | 94 | 99 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
FEBRUAR | | MAX | MIN
MARCH | | MAX | MIN
APRI | | MAX | MIN
MAY | | | DAY 1 2 3 4 5 | MAX
100
101
100
100
101 | | | MAX
110
109
108
109 | | | MAX
121
112
112
106
104 | APRI
111
107
105
103 | | MAX
41
42
43
49
48 | MAY
39 | | | 1
2
3
4 | 100
101
100
100 | FEBRUAR
99
99
99
98 | 99
100
99
99 | 110
109
108
109 | MARCH
108
107
107
107 | 109
108
107
108 | 121
112
112
106 | APRI
111
107
105
103
97
94
93
93 | 116
109
109
104 | 41
42
43
49 | MAY
39
40
42
42
40 | 40 | | 1
2
3
4
5
6
7
8
9 | 100
101
100
100
101
101
102
103
108 | 99
99
99
98
99
101
102
102 | 99
100
99
99
100
100
102
102
103 | 110
109
108
109
109
109
109 | MARCH
108
107
107
107
108
108
107 | 109
108
107
108
109
108
108
108 | 121
112
112
106
104
97
95
95 | APRI
111
107
105
103
97
94
93
93 | 116
109
109
104
100 | 41
42
43
49
48
41
42
43 | MAY
39
40
42
40
40
40
41
41 | 40
41
42
47
43
40
41
42
43 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 100
101
100
100
101
101
102
103
108
119
106
106
107 | 99
99
99
98
99
101
102
105
105
104
105
106 | 99
100
99
100
100
102
102
103
111
105
105
106 | 110
109
108
109
109
109
109
109
110
117
122
120 | MARCH
108
107
107
107
108
108
107
108
108
108
109
109
115 |
109
108
107
108
109
108
108
108
108
109
111
117
113 | 121
112
104
104
97
95
96
97
96
97
98 | APRI
111
107
105
103
97
94
93
93
93
94
92
92
84
72 | 116
109
109
104
100
96
94
95
96
94
93
89 | 41
42
43
48
41
43
45
45
45
45
45
44
48
48 | MAY 39 40 42 42 40 40 41 42 44 43 42 43 43 | 40
41
427
43
40
41
43
45 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 100
101
100
100
101
101
102
103
108
119
106
106
107
107
107 | 99
99
99
98
99
101
102
105
105
105
106
106
106 | 99
100
99
100
100
102
102
103
111
105
106
106
107
107
108 | 110
109
109
109
109
109
109
109
110
117
122
120
119 | MARCH 108 107 107 108 108 108 108 108 108 111 111 111 111 | 109
108
107
108
109
108
108
108
108
109
111
117
113
115 | 121
112
110
104
97
95
96
97
96
97
96
97
95
95
95
95
95 | APRI
111
107
105
103
97
94
93
93
93
94
92
84
78
72
57
49
50
50 | 116
109
109
104
100
96
94
95
96
94
93
89
82
76 | 41243948
41243948
4124356
412448
417
4188
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944
41944 | MAY 39 40 42 40 40 41 42 44 43 43 43 46 46 44 | 41273
412273
41235
445
445 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 100
101
100
101
101
102
103
108
119
106
106
107
107
107
107
107
109
111 | 99 99 99 99 101 102 105 105 106 106 106 106 107 108 108 109 110 | 99
100
99
100
100
102
102
103
111
105
106
106
107
107
108
109
109
112
111 | 110
109
109
109
109
109
109
109
110
117
122
120
119
116
117
114
120
121
124
129 | MARCH 108 107 107 108 108 108 108 108 109 115 111 111 111 111 111 111 111 111 11 | 109
108
107
108
109
108
108
108
109
109
111
117
113
115
115
115
112
115
112
116
119
124 | 121
112
1106
104
97
95
96
97
96
97
73
85
79
73
85
79
73
81
72 | APRI
111
107
105
103
97
94
93
93
93
94
92
92
92
84
78
72
57
49
49
50
50 | 116
109
109
109
100
96
97
97
98
98
98
98
98
98
98
98
98
98
98
98
98 | 112398
412398
412356
548847
4488
4447
44844
4455
7912 | MAY 39042240 40041244 423333 4664444 4456850 | 011273 01235 43545 77645
4444 4444 4444 | DAY MAX MIN # STREAMS TRIBUTARY TO LAKE SUPERIOR # 04014500 BAPTISM RIVER NEAR BEAVER BAY, MN--Continued SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 MEAN MAX MIN MEAN MAX MIN MEAN MAX MIN MEAN | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMB | ER | |---|--|---|---|---|--|--|--|---|--|---|--|--| | 1
2
3
4
5 | 58
58
59
61
63 | 57
57
57
59
61 | 58
57
58
60
62 | 91
90
95
87
78 | 87
88
86
76
76 | 89
89
89
80
77 | 76
78
80
81
83 | 75
76
77
80
81 | 75
77
79
81
82 | 87
92
86
82
82 | 85
86
81
80
81 | 86
89
83
81
82 | | 6
7
8
9
10 | 65
67
68
71
72 | 62
65
67
66
64 | 63
66
67
68
68 | 77
75
49
53
53 | 72
49
47
47
47 | 75
61
48
50
49 | 85
86
63
54
53 | 83
63
54
53
52 | 84
77
58
53
53 | 84
85
88
90
98 | 81
83
84
87
88 | 83
84
86
89
91 | | 11
12
13
14
15 | 64
65
63
64
66 | 61
62
61
62
64 | 63
63
62
63
65 | 49
53
49
43
44 | 45
49
44
40 | 46
50
47
41
43 | 56
59
62
65
68 | 53
56
59
62
65 | 55
57
60
63
66 | 94
89
79
62
62 | 82
80
62
60
59 | 86
84
69
61
60 | | 16
17
18
19
20 | 73
73
70
72
73 | 65
67
68
70
71 | 67
69
69
71
73 | 49
56
51
53
57 | 45
48
50
51
53 | 47
52
51
52
55 | 71
73
75
79
78 | 68
71
73
75
77 | 70
72
74
78
78 | 60
62
61
61
62 | 59
59
59
59
60 | 59
61
60
61 | | 21
22
23
24
25 | 75
76
78
80
81 | 73
73
76
77
79 | 74
75
77
79
80 | 60
59
61
65
66 | 55
58
58
61
64 | 58
58
59
62
65 | 80
86
77
76
76 | 77
78
74
71
74 | 79
82
75
73
75 | 62
64
65
66
67 | 60
61
62
64
65 | 61
62
64
65
66 | | 26
27
28
29
30
31 | 83
85
87
89
89 | 80
82
84
84
87 | 82
84
85
87
88 | 67
69
72
75
76
75 | 66
67
69
71
75
74 | 66
68
70
73
75
75 | 75
77
77
82
82
83 | 74
74
75
76
81
80 | 74
75
76
79
82
81 | 69
71
73
75
75
 | 66
68
70
72
73 | 67
69
71
74
74 | | MONTH
YEAR | 89
131 | 57
32 | 70
79 | 95 | 40 | 62 | 86 | 52 | 72 | 98 | 59 | 73 | | | | п | TEM DED ATHRE | מ) משתחאות ל | | MAMED VEA | R OCTOBER 1 | 091 TO 9 | T DITCMOTO | 1090 | | | | | | 1 | PHLPUATOU | water (D | EG. (), | MAIEU 1EH | N OOLODEN 1 | 901 10 8 | ELIENDEN | 1902 | | | | DAY | MAX | MIN | MEAN | | DAY | MAX | | MEAN | - | • | MEAN | | | MEAN | | MIN
JANUAR | | | DAY 1
2 3 4 5 | MAX 6.0 6.0 7.0 7.0 7.5 | MIN | MEAN | - | MIN | MEAN | | MIN | MEAN | | | | | 1
2
3
4 | 6.0
6.0
7.0
7.0 | MIN
OCTOBE:
4.5
3.5
3.5
6.5 | MEAN R 5.5 4.5 5.0 6.5 | MAX 5.5 4.5 4.5 5.5 | MIN
NOVEMBE.
3.0
3.0
1.5
3.5 | MEAN R 4.5 4.0 3.0 4.5 | .0
.0
.0 | MIN DECEMBER .0 .0 .0 .0 | MEAN .0 .0 .0 .0 | .0
.0
.0 | JANUAR .0 .0 .0 .0 | .0
.0
.0 | | 1
2
3
4
5
6
7
8
9 | 6.0
6.0
7.0
7.0
7.5
8.5
8.5
7.5 | MIN
OCTOBE:
4.5
3.5
3.5
6.5
6.0
7.0
5.0
6.0 | MEAN R 5.5 5.0 6.5 7.0 7.5 6.5 7.0 | MAX 5.5 4.5 5.6 4.5 5.0 4.5 1.0 | MIN
NOVEMBE.
3.0
3.0
1.5
3.5
4.5
2.5
1.0
1.0 | MEAN R 4.5 4.0 3.0 4.5 5.5 3.5 2.5 2.5 | MAX .0 .0 .0 .0 .0 .0 .0 .0 | MIN DECEMBEI .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MEAN | .0
.0
.0
.0
.0
.0 | JANUAR .0 .0 .0 .0 .0 .0 .0 .0 | .0
.0
.0
.0
.0
.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 6.0
6.0
7.0
7.5
8.5
8.5
7.5
8.0
9.5
9.5 | MIN OCTOBE: 4.5 3.5 3.5 6.5 6.0 7.0 5.0 6.0 7.0 7.5 8.5 8.5 | MEAN R 5.55050 7.55507 7.55509 7.55500 | MAX 5.5 4.5 4.5 5.6 4.5 5.0 4.5 1.0 2.5 3.5 | MIN NOVEMBE. 3.0 3.0 1.5 3.5 4.5 2.5 1.0 1.0 0 0 0 1.0 2.0 | MEAN R 4.5 4.0 3.0 4.5 5.5 2.5 2.5 1.0 1.5 2.5 | MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MIN DECEMBEI .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MEAN .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0
.0
.0
.0
.0
.0
.0 | JANUAR .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | Y .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 6.00
7.00
7.55
8.05
7.55
8.05
9.05
9.05
9.05
9.05
9.05
9.05
9.05 | MIN OCTOBE: 4.5 3.55 6.0 7.0 7.0 7.5 8.5 7.5 6.5 8.5 7.5 | MEAN 5.50.50 7.55.50 7.55.50 7.55.50 8.50.50 8.50.50 8.50.50 | MAX 5.5 5.5 6.0 4.5 5.0 4.0 2.5 5.0 2.5 5.0 3.5 5.0 3.5 5.0 3.5 5.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6 | MIN NOVEMBE. 3.0 3.0 1.5 3.5 4.5 2.5 1.0 0.0 0.0 1.0 2.0 3.0 4.0 3.0 1.5 .0 | MEAN R 4.5 4.0 3.0 5.5 5.5 5.5 5.5 6.5 6.5 6.5 6.5 6.5 6.5 | MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MIN DECEMBEI .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MEAN .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | JANUAR .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | Y .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 66.00
77.00
8.05
8.05
8.05
8.05
99.05
99.05
99.05
42.50 | MIN OCTOBE: 4.5 3.55 6.0 7.0 5.00 7.0 7.5 8.5 7.5 6.5 8.5 7.6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 | MEAN 5.5050 7.66.50 7.66.50 7.55500 8.6050 8.6050 8.6050 1.5000 | MAX 5.55 6.0 4.55 6.0 4.50 1.5 1.00 2.55 3.55 6.0 3.00 1.5 0.00 0.00 0.00 | MIN NOVEMBE. 3.0 3.0 1.5 3.5 4.5 2.5 1.0 0.0 0.0 1.0 2.0 3.0 4.0 3.0 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 | MEAN R 4.50 3.05 5.55 5.55 5.55 6.05 1.05 5.55 4.55 6.00 6.00 6.00 | MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MIN DECEMBEI .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MEAN .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | JANUAR .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | Y .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | # 04014500 BAPTISM RIVER NEAR BEAVER BAY, MN--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | DAY | MAX | MIN | MEAN | MAX | MIN | MEAN | MAX | MIN | MEAN | XAM | MIN | MEAN | |---|--|--|--|--|---|--|--|--|--|--|---|--| | | | FEBRUAR | Y | | MARCH | | | APRII | , | | MAY | | | 1
2
3
4
5 | .0
.0
.0 9.5
10.0
10.0
11.0
10.5 | 4.0
6.5
6.5
8.0
9.0 | 6.5
8.0
8.5
9.5
10.0 | | 6
7
8
9
10 | .0
.0
.0 9.0
8.0
10.0
8.0
9.5 | 7.5
6.0
5.5
7.0
6.5 | 8.5
7.5
8.0
7.5
8.0 | | 11
12
13
14
15 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0
.0 | .0
.0
.0 | .0
.0
.0 | 11.0
10.0
8.5
13.0
15.5 | 8.5
9.0
8.0
8.0 | 9.5
9.5
8.0
10.5
13.5 | | 16
17
18
19
20 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.5
1.5
2.0 | .0
.0
.0 | .0
.0
.5 | 13.5
10.5
12.5
14.0
13.5 | 10.5
10.0
9.5
11.5
10.5 | 11.5
10.0
11.0
12.5
11.5 | | 21
22
23
24
25 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | 2.5
3.5
3.5
3.5
4.5 | .0
.0
.0
.0 | 1.0
1.0
1.5
2.0
2.5 | 13.5
14.0
15.5
16.0
18.5 | 9.5
9.0
9.5
10.5
12.0 | 11.0
11.5
12.5
13.5
15.5 | | 26
27
28
29
30
31 | .0 | .0 | .0 | .0
.0
.0
.0 | .0
.0
.0
.0 | .0
.0
.0
.0 | 4.5
5.5
7.5
8.5
6.5 | 1.5
2.0
2.5
4.0
4.5 | 3.0
4.0
5.0
6.0
5.5 | 19.0
19.0
19.5
18.0
20.0
17.5 | 14.0
14.5
14.0
15.5
14.5
13.5 | 16.5
16.5
17.0
16.5
17.5
14.5 | | MONTH | •0 | •0 | •0 | •0 | .0 | •0 | 8.5 | •0 | 1.0 | 20.0 | 4.0 | 11.5 | | | | | | | | | | | | | | | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN | MEAN | MAX | MIN
AUGUST | MEAN | MAX | MIN
SEPTEM | MEAN
BER | | DAY 1 2 3 4 5 | MAX
14.0
15.0
16.0
17.5
17.5 | | MEAN 12.5 12.5 13.0 14.0 15.0 | 20.5
18.5
16.5
16.0
21.5 | | MEAN 18.0 17.0 15.5 14.5 18.0 | 21.0
14.5
17.5
18.0
19.5 | | | MAX
16.0
16.0
17.0
17.5 | • | | | 1
2
3
4 | 14.0
15.0
16.0
17.5 | JUNE 11.5 10.0 10.0 10.5 | 12.5
12.5
13.0
14.0 | 20.5
18.5
16.5
16.0 | JULY
16.0
16.0
14.5
13.5 | 18.0
17.0
15.5
14.5 | 21.0
14.5
17.5
18.0 | AUGUST
15.0
13.5
14.0
17.0 | 17.5
14.0
15.5
17.5 | 16.0
16.0
16.0
17.0 | SEPTEME
13.0
14.0
12.5
12.0 | 3ER
14.0 | | 1
2
3
4
5
6
7
8
9 | 14.0
15.0
16.0
17.5
17.5
16.0
17.0
17.5
16.5 | JUNE 11.5 10.0 10.0 10.5 12.5 13.0 14.5 13.5 12.5 | 12.5
12.5
13.0
14.0
15.0
14.5
16.0
15.5
14.0 | 20.5
18.5
16.5
16.5
21.5
23.5
21.0
19.5
18.0 | JULY
16.0
16.0
14.5
13.5
15.5
19.0
16.5
15.0
14.5 | 18.0
17.0
15.5
14.5
18.0
21.0
18.5
17.0
16.5 | 21.0
14.5
17.5
18.0
19.5
19.0
18.5
16.0 | AUGUST
15.0
13.5
14.0
17.0
17.0
17.5
17.0
16.0
14.5 | 17.5
14.0
15.5
17.5
18.0
18.5
17.5
17.0
15.0 | 16.0
16.0
17.0
17.5
15.0
14.5
17.5 | SEPTEMN
13.0
14.0
12.5
12.0
14.5
12.0
11.5
14.5 | 14.0
15.0
14.5
14.5
16.0
13.5
13.0
16.0
18.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 14.0
15.0
16.0
17.5
17.5
16.0
17.0
17.5
16.5
16.5 | JUNE 11.5 10.0 10.0 10.5 12.5 13.0 14.5 12.5 12.0 12.5 12.0 14.5 | 12.5
12.5
13.0
14.0
15.0
14.5
14.0
14.5
14.0
14.5
14.0 | 20.5
18.5
16.5
16.0
21.5
23.5
21.0
19.5
18.0
14.5 | JULY 16.0 16.0 14.5 13.5 15.5 19.0 16.5 13.5 13.5 15.0 15.5 | 18.0
17.0
15.5
14.5
18.0
21.0
18.5
17.0
16.5
14.0 | 21.0
14.5
17.5
18.0
19.5
19.0
19.0
18.5
16.0
14.5 | AUGUST 15.0 13.5 14.0 17.0 17.0 17.5 17.0 14.5 12.5 13.0 14.5 14.5 | 17.5
14.0
15.5
17.5
18.0
18.5
17.0
15.0
14.0 | 16.0
16.0
17.0
17.5
15.0
14.5
17.5
19.5
19.0
18.5
18.0
16.5 | SEPTEMN
13.0
14.0
12.5
12.0
14.5
12.0
11.5
14.5
17.0
17.0
16.0
16.5
14.0 | 14.0
15.0
14.5
14.5
16.0
13.5
13.0
16.0
18.5
17.0
17.5 | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | 14.0
15.0
16.0
17.5
17.5
16.0
17.5
16.5
16.5
16.5
18.5
18.5
16.5
14.5 | JUNE 11.5
10.0 10.0 10.5 12.5 13.0 14.5 12.0 12.5 12.0 14.5 12.0 14.5 12.0 12.5 12.0 | 12.5
12.5
13.0
15.0
14.0
15.5
14.0
14.5
14.0
16.0
16.0
14.5
14.5
14.0
14.5
14.5 | 20.5
18.5
16.0
21.5
23.5
21.0
19.5
18.0
14.5
18.5
17.0
17.0
19.0
21.0
20.5 | JULY 16.0 16.0 14.5 13.5 15.5 19.0 16.5 15.0 14.5 15.5 16.0 16.5 17.0 16.5 17.5 15.5 | 18.0
17.0
15.5
14.5
18.0
21.0
18.5
17.0
16.5
14.0
16.5
17.0
16.5
17.0
16.5 | 21.0
14.5
17.5
18.0
19.5
19.0
18.5
16.5
16.5
20.0
21.5
22.5
21.0
19.5 | AUGUST 15.0 13.5 14.0 17.0 17.0 16.0 14.5 12.5 12.5 14.5 14.5 14.5 14.5 14.5 16.5 | 17.5
14.0
15.5
17.5
18.0
18.5
17.5
17.0
15.0
15.0
15.0
17.0
19.0 | 16.0
16.0
17.0
17.5
15.0
14.5
17.5
19.0
18.5
18.0
16.5
14.0
12.0 | SEPTEME 13.0 14.0 12.5 12.0 14.5 12.0 11.5 14.5 17.0 16.0 16.5 14.0 12.5 10.0 9.5 11.0 | 14.0
15.0
14.5
14.5
16.0
13.5
13.0
16.0
18.5
17.0
17.0
13.5
11.0 | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 3 24 | 14.0
15.0
17.5
17.5
16.0
17.5
16.5
16.0
17.5
16.5
17.5
16.5
17.5
16.5
17.5
16.5
17.5
16.5
17.5
16.5
17.5
16.5
17.5
16.5
17.5
16.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17 | JUNE 11.5 10.0 10.0 10.5 12.5 13.0 14.5 12.0 12.0 14.0 12.5 12.0 13.0 14.0 14.0 14.0 14.5 | 12.5
13.0
15.0
15.0
14.0
14.5
14.0
14.5
14.0
14.5
14.5
14.5
14.5
15.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16 | 20.5
18.5
16.0
21.5
23.5
21.0
19.5
18.0
14.5
18.5
17.0
17.0
21.0
20.5
19.0
21.0
21.0
22.0 | JULY 16.0 16.0 14.5 13.5 15.5 19.0 16.5 15.0 15.5 15.0 15.5 16.0 16.5 17.5 16.0 18.5 17.5 17.0 17.0 | 18.0
17.0
15.5
18.0
21.0
18.5
17.0
16.5
17.0
16.5
17.0
17.5
18.5 | 21.0
14.5
17.5
18.0
19.5
19.0
18.5
16.0
14.5
17.5
18.0
21.5
22.5
21.0
22.5
22.0
20.5 | AUGUST 15.0 13.5 14.0 17.0 17.0 16.0 14.5 12.5 14.5 14.5 14.5 17.5 14.5 17.5 17.6 16.5 17.5 17.6 16.5 | 17.5
14.0
15.5
18.0
18.5
17.5
17.0
14.0
15.5
15.0
17.0
19.0
21.0
19.5
18.0
19.5
18.0
19.5 | 16.0
16.0
17.0
17.5
15.0
14.5
17.5
19.0
18.5
18.0
16.5
14.0
12.0
12.5
12.5
11.0 | SEPTEME 13.0 14.0 12.5 12.0 14.5 12.0 14.5 17.0 16.0 17.0 16.5 14.0 12.5 10.0 9.0 7.0 8.0 9.0 9.5 | 14.0
15.0
14.5
14.5
16.0
13.5
13.0
16.0
18.5
17.0
15.0
17.0
11.5
11.0
12.0
10.0 | ## 04015330 KNIFE RIVER NEAR TWO HARBORS, MN LOCATION.--Lat 46°56'49", long 91°47'32", in SWANWA sec.31, T.52 N., R.11 W., Lake County, Hydrologic Unit 04010102, on right bank 600 ft (183 m) downstream from bridge on U.S. Highway 61, 0.5 mi (0.8 km) upstream from bridge on County Highway 102, in town of Knife River, 0.8 mi (1.3 km) upstream from Lake Superior, and 7.8 mi (12.6 km) southwest of Two Harbors. DRAINAGE AREA.--85.6 $m1^2$ (221.7 km^2). PERIOD OF RECORD.--Occasional low-flow measurements, water years 1970-71, July 1974 to current year. GAGE.--Water-stage recorder and crest-stage gage. Altitude of gage is 640 ft (195 m), from topographic map. REMARKS .-- Records fair except those for winter period, which are poor. AVERAGE DISCHARGE.--8 years, 86.0 ft3/s (2.436 m3/s), 13.64 in/yr (346 mm/yr). EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 7,440 ft 3 /s (211 m 3 /s) May 10, 1979, gage height, 11.16 ft (3.402 m); minimum, no flow Dec. 2, 1976 to Mar. 4, 1977. EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 800 ft³/s (22.7 m³/s) and maximum (*): | Date | Time | Discha
(ft ³ /s) | arge
(m ³ /s) | Gage h
(ft) | eight
(m) | Date | : | Time | Disc
(ft ³ /s) | harge
(m ³ /s) | Gage
(ft) | height
(m) | |-------------------------------|-------------------------------|--------------------------------------|---|----------------------|-------------------------------------|--------------------------|------------------|------------------------------|-------------------------------|------------------------------|-------------------------------|----------------------------------| | Oct. 17
Apr. 17
Apr. 23 | 2030
2015
2315
daily | 1010
1880
1540
discharge, 3 | 28.6
53.2
43.6
.5 ft ³ /s | 5.50
6.62
6.29 | 1.676
2.018
1.917
3/s) Jan | May July July July . 12. | 5
3
7
9 | 0645
0800
0530
1315 | 2120
*3270
2020
1420 | 60.9
92.6
57.2
40.2 | 6.95
*8.03
6.73
5.99 | 2.118
2.448
2.051
1.826 | | | | DISCHARG | E, IN CU | BIC FEET | | D, WATER
IEAN VALU | YEAR OCTO
JES | BER 1981 | TO SEPTEM | BER 1982 | | | |--|--|---------------------------------------|--|------------------------------------|------------------------------------|---|---|---|----------------------------------|---|--------------------------------------|-------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | YAN | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 128
93
54
222
193 | 39
34
30
28
29 | 23
22
21
20
20 | 6.9
6.2
5.4 | 4.4
4.5
4.6
4.6 | 5.8
5.8
5.8
6.0 | 450
400
540
580
500 | 176
155
121
141
1280 | 30
30
26
23
20 | 27
19
1180
378
356 | 30
24
21
21
19 | 16
24
20
16
12 | | 6
7
8
9
10 | 128
83
61
44
151 | 28
23
23
20
20 | 19
19
18
18 | 5.1
4.8
4.5
4.2
4.0 | 4.7
4.7
4.8
4.8 | 6.0
6.2
6.2
6.2 | 400
300
250
230
200 | 572
332
221
164
247 | 19
18
19
19
61 | 597
1330
427
726
629 | 18
17
25
22
18 | 9.9
9.0
8.8
8.4
9.8 | | 11
12
13
14
15 | 138
87
85
438
229 | 19
18
19
19 | 17
16
16
15
15 | 3.8
3.5
3.6
3.6 | 4.9
4.9
5.0
5.0 | 6.4
6.6
6.8
7.0 | 180
370
734
937
1160 | 258
203
463
391
271 | 48
40
33
25
107 | 413
194
114
79
70 | 15
13
17
29
24 | 18
40
144
82
94 | | 16
17
18
19
20 | 133
400
480
218
166 | 19
20
19
18
16 | 14
14
13
13 | 3.7
3.7
3.7
3.8
3.8 | 5.0
5.2
5.2
5.2
5.2 | 7.3
7.6
7.9
8.2
8.5 | 1270
1580
1150
734
589 | 240
239
471
362
237 | 80
48
35
28
34 | 209
261
122
65
46 | 19
15
12
11
10 | 106
87
84
56
45 | | 21
22
23
24
25 | 133
97
76
62
54 | 16
16
16
15
15 | 12
11
11
10
10 | 3.9
3.9
4.0
4.1 | 5.2
5.4
5.4
5.4 | 9.0
9.4
9.8
10 | 564
713
1000
1300
1070 | 163
124
96
79
65 | 45
35
26
21
19 | 66
95
52
37
39 | 9.1
13
21
15
14 | 37
28
24
31
33 | | 26
27
28
29
30
31 | 44
49
48
47
47 | 20
27
27
24
23 | 9.6
9.2
8.6
8.2
7.8
7.4 | 4.1
4.2
4.2
4.3
4.3 | 5.4
5.6
5.6 | 13
19
24
30
70
200 | 598
402
295
240
202 | 56
48
42
37
34
30 | 16
14
14
50
42 | 33
28
22
21
44
43 | 14
11
9.5
9.0
9.3
9.8 | 28
23
21
21
22 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 4230
136
480
42
1.59
1.84 | 659
22.0
39
15
.26
.29 | 446.8
14.4
23
7.4
.17
.19 | 135.7
4.38
6.9
3.5
.05 | 140.1
5.00
5.6
4.4
.06 | 537.5
17.3
200
5.6
.20
.23 | 18938
631
1580
180
7•37
8•23 | 7318
236
1280
30
2.76
3.18 | 1025
34.2
107
14
.40 | 7722
249
1330
19
2.91
3.36 | 514.7
16.6
30
9.0
.19 | 1157.9
38.6
144
8.4
.45 | | CAL YR : | | | | 84.0
117 | MAX 1850
MAX 1580 | MIN 2
MIN 3 | | | 1 13.32
1 18.61 | | | | NOTE .-- No gage-height record Feb. 4 to Mar. 10. # 04015475 PARTRIDGE RIVER ABOVE COLBY LAKE, AT HOYT LAKES, MN LOCATION.--Lat 47°31'38", long 92°07'21", in SW&NE& sec.9, T.58 N., R.14 W., St. Louis County, Hydrologic Unit 04010201, in Superior National Forest, 10 ft (3.0 m) upstream from bridge on County Highway 110, 1 mi (1.6 km) east of Hoyt Lakes. DRAINAGE AREA.--106 mi^2 (275 km^2) of which 6.0 mi^2 (15.5 km^2) is noncontributing. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD .-- October 1978 to current year. GAGE.--Water-stage recorder. Altitude of gage is 1,455 ft (443 m), from topographic map. REMARKS .-- Records fair except those for period of no gage-height record, Jan. 27 to Mar. 2, which are poor. EXTREMES FOR PERIOD OF RECORD.—-Maximum discharge, 2,020 ft³/s (57.2 m³/s) Apr. 22, 1979, gage height, 10.89 ft (3.319 m); minimum, 0.88 ft³/s (0.025 m³/s) Feb. 15, 1981, gage height, 4.81 ft (1.466 m). EXTREMES OUTSIDE PERIOD OF RECORD.--A discharge of 0.50 ft3/s (0.014 m3/s) was measured Aug. 23, 1976. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 609 $\rm ft^3/s$ (17.2 $\rm m^3/s$) Apr. 27, gage height, 8.42 ft (2.566 m); minimum daily, 2.7 $\rm ft^3/s$ (0.076 $\rm m^3/s$) Jan. 20, 21, 25, 26. | DISCHARGE, | IN | CUBIC | FEET | PER | SECOND, | WATER | YEAR |
OCTOBER | 1981 | TO | SEPTEMBER | 1982 | |------------|----|-------|------|-----|---------|--------|------|---------|------|----|-----------|------| | | | | | | MEA | N VALU | ES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|--|---|--|--|-----------------------------------|------------------------------------|--|---|---------------------------------|--|---|---| | 1
2
3
4
5 | 15
21
28
40
57 | 102
94
83
77
69 | 18
18
18
17
16 | 8.5
8.3
8.4
8.4
7.9 | 2.9
2.9
2.9
2.9 | 4.0
4.0
4.0
3.7
3.7 | 11
13
16
18
19 | 345
286
246
234
312 | 67
61
54
52
46 | 17
15
18
26
44 | 49
42
39
40
38 | 56
61
72
81
77 | | 6
7
8
9
10 | 76
93
100
115
134 | 66
60
55
52
48 | 16
15
15
15
14 | 7.8
7.4
7.4
7.1
6.8 | 3.0
3.0
3.0
3.0
3.0 | 3.7
3.6
3.5
3.4
3.3 | 20
20
20
20
20 | 398
472
510
485
442 | 42
· 37
36
36
43 | 71
127
181
241
332 | 36
64
141
196
200 | 63
52
46
44
46 | | 11
12
13
14
15 | 130
114
110
152
183 | 48
48
48
46
42 | 14
14
14
13 | 6.1
5.8
5.2
5.0
4.7 | 3.0
3.0
3.0
3.0 | 3.3
3.2
3.5
3.2
3.2 | 20
21
22
30
71 | 436
472
530
562
566 | 58
82
86
77
77 | 403
445
451
420
353 | 170
131
109
95
87 | 50
64
118
169
185 | | 16
17
18
19
20 | 213
216
227
239
256 | 39
37
35
33
30 | 13
13
12
12
11 | 4.7
3.5
3.2
3.0
2.7 | 3.1
3.2
3.3
3.4
3.6 | 3.0
3.2
3.5
3.7
3.2 | 191
291
362
410
461 | 548
510
461
426
401 | 73
69
62
55
50 | 291
238
192
157
130 | 77
68
62
64
67 | 177
171
173
175
172 | | 21
22
23
24
25 | 260
244
216
185
160 | 26
24
22
21
20 | 11
11
10
10
9.8 | 2.7
2.8
2.8
2.8
2.7 | 3.8
4.0
4.0
4.0 | 3.2
3.0
3.2
3.2
3.2 | 489
455
439
461
513 | 377
339
288
232
187 | 46
42
36
30
29 | 116
119
113
100
91 | 68
86
110
121
117 | 156
134
115
109
104 | | 26
27
28
29
30
31 | 139
127
117
109
106
104 | 20
19
19
19
19 | 9.2
9.2
8.8
8.8
8.8 | 2.7
2.8
2.8
2.8
2.8
2.8 | 4.0
4.0
4.0 | 3.5
3.7
4.5
5.0
8.0 | 569
602
576
502
420 | 156
130
106
94
87
76 | 25
21
18
19
18 | 83
71
60
58
59
55 | 106
93
82
74
67
61 | 97
90
85
82
83 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 4286
138
260
15
1.30
1.50 | 1321
44.0
102
19
.42
.46 | 396.4
12.8
18
8.8
.12
.14 | 152.5
4.92
8.5
2.7
.05 | 92.9
3.32
4.0
2.9
.03 | 114.6
3.70
8.0
3.0
.04 | 7082
236
602
11
2.23
2.49 | 10714
346
566
76
3.26
3.76 | 1447
48.2
86
18
.46 | 5077
164
451
15
1.55
1.78 | 2760
89.0
200
36
.84
.97 | 3107
104
185
44
•98
1•09 | CAL YR 1981 TOTAL 30483.12 MEAN 83.5 MAX 600 MIN .96 CFSM .79 IN 10.70 WTR YR 1982 TOTAL 36550.40 MEAN 100 MAX 602 MIN 2.7 CFSM .94 IN 12.83 # 04015475 PARTRIDGE RIVER ABOVE COLBY LAKE AT HOYT LAKES, MN--Continued WATER-QUALITY RECORDS PERIOD OF RECORD. -- February 1976 to current year. PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: February 1976 to current year. WATER TEMPERATURES: February 1976 to current year. INSTRUMENTATION .-- Specific conductance and water temperature recorder since February 1976. REMARKS.--Extremes are published for years with 80 percent or more daily record. EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE (water year 1980): Maximum, 268 micromhos Aug. 28 and 29, 1980; minimum, 63 micromhos April 11, 1980. WATER TEMPERATURES (water years 1979, 1980): Maximum, 27.5°C June 25, 1980; minimum, 0.0°C on many days during winter periods. SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | DAY | MAX | MIN | MEAN | |----------------------------------|---------------------------------------|-------------------------------|---------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|---|--| | | | OCTOBE | R | | NOVEMBE | R | | DECEMBE | R | | JANUAR | Y | | 1
2
3
4
5 | | | | 123
122
122
121
118 | 122
122
120
118
115 | 122
122
122
120
116 | 131
131
129
130
132 | 130
129
128
129
129 | 130
130
129
129
131 | | | | | 6
7
8
9 | | | | 115
114
112
112
112 | 114
112
110
110
112 | 114
112
111
111
112 | 135
138
141
147
154 | 133
136
138
141
148 | 134
137
140
145
152 | | | | | 11
12
13
14
15 | | | | 112
111
112
112
112 | 110
110
110
110
108 | 110
110
111
112
111 | 160
164
167
168
170 | 155
161
165
167
168 | 158
163
166
168
169 | 219
219 | 216
216 | 218
219 | | 16
17
18
19
20 | 114
107
94
92
91 | 107
94
91
91
88 | 110
100
92
92
90 | 108
104
106
110
106 | 104
104
103
92
92 | 106
104
104
104
110 | 172
173
173
173
173 | 170
172
173
173
173 | 171
173
173
173
173 | 216
221
224
225
226 | 182
199
221
223
223 | 205
214
223
224
225 | | 21
22
23
24
25 | 88
83
86
87
88 | 83
82
83
86
85 | 85
82
85
86
87 | 121
123
124
126
127 | 116
121
123
124
126 | 118
122
124
126
126 | 173
173
173
172
173 | 173
172
171
171
171 | 173
173
172
172
172 | 227
228
228
229
230 | 226
227
227
226
229 | 227
227
228
229
230 | | 26
27
28
29
30
31 | 96
105
112
120
122
122 | 89
96
105
112
121 | 93
101
109
116
122
122 | 127
129
130
130
131 | 126
127
129
130
130 | 126
128
129
130
130 | 173

 | 173 | 173 | 231
232
232
232
231
232 | 230
231
231
231
221
221
230 | 231
231
231
232
228
231 | | MONTH | | | | 131 | 92 | 117 | | | | | | | STREAMS TRIBUTARY TO LAKE SUPERIOR # 04015475 PARTRIDGE RIVER ABOVE COLBY LAKE AT HOYT LAKES, MN--Continued MONTH DAY MAX MIN MEAN STREAMS TRIBUTARY TO LAKE SUPERIOR # 04015475 PARTRIDGE RIVER ABOVE COLRY LAKE AT HOYT LAKES, MN--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 MAX MIN MEAN MAX MIN MEAN MAX MIN MEAN | | | OCTOBE | R | | NOAEWBE | R | | DECEMBE | ₹ | | JANUAR | Y | |--|--|--------------------------------|---------------------------------------|----------------------------------|--|--|---|--|--------------------------------------|--|---|---| | 1
2
3
4
5 | | | | 5.5
5.5
5.5
5.5
5.5 | 4.5
4.0
4.0
4.5
4.5 | 5.0
5.0
4.5
5.0
5.5 | .0
.0
.0 | .0
.0
.0 | .0 | | | | | 6
7
8
9
10 | | | | 4·5
4·5
4·0
2·0
2·0 | 3.5
3.5
2.0
1.0 | 4.0
4.0
3.5
1.5 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | | | | | 11
12
13
14
15 | | | | 1.5
2.5
3.0
4.0
4.0 | 1.0
1.0
2.0
3.0
3.0 | 1.0
1.5
2.5
3.5
3.5 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0 | .0 | .0 | | 16
17
18
19
20 | 10.0
9.5
9.0
6.0 | 8.5
9.0
6.0
5.0 | 9.5
9.5
7.5
5.5 | 5.0
4.5
4.0
2.5
1.5 | 4.0
4.0
2.5
1.5 | 4.5
4.5
3.5
2.0 | .0
.0
.0 | .0
.0
.0 | 0 0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | | 21
22
23
24
25 | 5.0
4.0
2.0
1.0 | 4.0
2.5
1.0
.5 | 4.5
3.0
1.5
.5 | .0
.0
.5
1.0 | .0
.0
.5 | .0
.0
.5
.5 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | | 26
27
28
29
30
31 | 1.0
1.5
1.5
3.5
5.5
6.0 | .0
1.0
1.5
3.5
5.0 | .5
1.0
1.0
2.0
4.0
5.5 | •5
•5
•0
•0 | .5
.0
.0
.0 | .5
.0
.0
| .0 | .0 | .0 | .0
.0
.0 | .0
.0
.0
.0 | .0
.0
.0
.0 | | MONTH | | | | 5•5 | .0 | 2.5 | | | | | | | | DAY | MAX | MIN | MEAN | | | | FEBRUAR | Y | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | | FEBRUAR | Ā | .0
.0 | MARCH0 .0 | .0 | •5
•5
•5
•5 | •5
•5
•5
•5
•5 | • 55
• 55
• 55
• 55
• 55 | 9.5
10.5
11.0
13.5
13.0 | MAY
8.0
8.5
9.0
10.5
12.0 | 8.5
9.5
10.0
11.5
12.5 | | 2
3
4 | | FEBRUAR | У | .0
.0 |
.0
.0 | .0 | •5
•5 | •5
•5
•5 | •5
•5 | 10.5
11.0
13.5 | 8.0
8.5
9.0
10.5 | 9.5
10.0
11.5 | | 2
3
4
5
6
7
8
9 | | FEBRUAR | У | .0 .0 .0 .0 .0 .0 .0 .0 | .0 | .0
.0
.0 | .5
.5
.0
.0 | .5
.5
.5
.5
.5 | .5
.5
.0
.0 | 10.5
11.0
13.5
13.0
12.0
10.5
10.5 | 8.0
8.5
9.0
10.5
12.0
10.5
9.0
7.5
9.0 | 9.5
10.0
11.5
12.5
11.5
9.5
9.0
10.0 | | 2
3
4
5
6
7
8
9
10 | | FEBRUAR | Ϋ́ | .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 . | .0
.0
.0
.0
.0
.0
.0 | .5
.5
.0
.0
.5
.0
.5 | .55
.55
.50
.00
.00
.00 | 5555 000005 55555 | 10.5
11.0
13.5
13.0
12.0
10.5
10.5
11.0
11.0
11.0 | 8.0
8.5
9.0
10.5
12.0
10.5
9.0
7.5
9.0
9.0 | 9.5
10.0
11.5
12.5
11.5
9.5
9.0
10.0
11.0
11.0
11.5 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | | FEBRUAR | Ā | .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 . | .0
.0
.0
.0
.0
.0
.0
.0 | .5
.5
.0
.0
.5
.0
.5
.1.0
.5
1.0 | .5
.5
.5
.5
.0
.0
.0
.0
.0 | .555 000005 55555 5 | 10.5
11.0
13.5
13.0
10.5
10.5
11.0
11.0
11.0
11.0
16.0 | 8.0
8.5
9.0
10.5
12.0
10.5
9.0
7.5
9.0
9.0
10.5
10.5
10.5
10.5
10.5
10.5
10.5 | 9.5
10.0
11.5
12.5
11.5
9.5
9.0
10.0
11.0
11.0
11.5
14.0 | STREAMS TRIBUTARY TO LAKE SUPERIOR # 04015475 PARTRIDGE RIVER ABOVE COLBY LAKE AT HOYT LAKES, MN--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | DAY | MAX | MIN | MEAN | |----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--|--------------------------------------|--------------------------------------|--------------------------------------|------|---------|------| | | | JUNE | | | JULY | | | AUGUST | 3 | | SEPTEME | BER | | 1
2
3
4
5 | 19.0
17.0
18.5
19.5
20.0 | 16.0
14.0
15.0
15.5
16.5 | 16.5
15.0
16.5
17.0
18.0 | 23.0
22.5
21.0
21.5
24.0 | 18.0
19.0
20.0
19.0
20.0 | 20.5
20.5
20.0
20.0
22.0 | 22.0
21.5
 | 20.5
19.5
 | 21.5 | 17.5 | 15.0 | 16.0 | | 6
7
8
9
10 | 20.0
19.0
18.0
18.0
18.5 | 17.0
17.5
15.5
16.5
16.0 | 18.5
17.5
16.5
17.0 | 25.5
24.0
22.5
21.5
18.5 | 22.5
21.5
20.5
18.5
17.0 | 23.5
22.5
21.5
20.0
17.5 | | | | | | | | 11
12
13
14
15 | 18.0
18.0
19.0
19.0 | 16.0
16.0
16.0
18.0
17.0 | 17.0
17.0
17.5
18.5 | 18.5
20.0
19.5
20.5
21.5 | 16.0
17.5
18.0
18.5
19.5 | 17.0
18.5
19.0
19.5
20.5 | | | | | | | | 16
17
18
19
20 | 18.5
18.5
18.0
17.0
18.0 | 16.5
16.0
17.0
16.0
15.5 | 17.5
17.5
17.5
16.5
16.5 | 21.5
23.5
22.0
21.5
22.0 | 20.5
21.0
21.0
20.0
19.5 | 21.0
22.0
21.5
20.5
20.5 | | | | | | | | 21
22
23
24
25 | 18.5
19.5
19.5
19.0
20.5 | 16.0
16.5
18.0
18.0 | 17.0
18.0
18.5
18.5 | 23.0
24.0
24.5
23.0
22.5 | 21.5
21.0
21.5
22.0
21.5 | 22.0
22.5
23.0
22.5
22.0 | 21.5
21.0
21.0
20.0
19.5 | 20.0
19.0
19.5
19.0
18.0 | 20.5
20.0
20.0
19.5
18.5 | | | | | 26
27
28
29
30
31 | 21.0
21.5
20.0
20.5
21.5 | 17.0
18.5
18.0
17.0 | 19.0
20.0
19.0
18.5
19.0 | 24.0
24.5
22.5
23.0
23.0 | 21.5
21.5
21.5
21.5
21.0
21.5 | 22.5
22.5
23.0
22.0
21.5
22.0 | 18.0
17.0
16.5
16.0
16.0 | 17.0
15.5
14.5
15.0
14.5 | 17.5
16.0
15.5
15.5
15.5 | | | | | HTNOM | 21.5 | 14.0 | 17.5 | 25.5 | 16.0 | 21.0 | | | | | | | #### 04016000 PARTRIDGE RIVER NEAR AURORA, MN LOCATION.--Lat 47°31'02", long 92°11'24", in SE4SW4 sec.12, T.58 N., R.15 W., St. Louis County, Hydrologic Unit 04010201, on right bank at upstream side of highway bridge, 1,000 ft (305 m) downstream from Second Creek, 2.5 mi (4.0 km) east of Aurora, and 2.8 mi (4.5 km) upstream from mouth. DRAINAGE AREA.--161 mi² (417 km²) of which 13.3 mi² (34.4 km²) is noncontributing. PERIOD OF RECORD .-- August 1942 to September 1982 (discontinued). REVISED RECORDS.--WSP 974: 1942. WSP 1307: 1943(M). WDR MN-77-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 1,402.30 ft (427.421 m) National Geodetic Vertical Datum of 1929. Aug. 5, 1942, to Aug. 25, 1944, nonrecording gage, and Aug. 26, 1944, to July 1, 1956, water-stage recorder at site 45 ft (14 m) downstream at same datum. REMARKS.--Records good except those for winter period and those for period of no gage-height record, Aug. 4 to Sept. 30, which are fair. Flow regulated at times by storage in off-channel Partridge Reservoir, formerly known as Whitewater Lake. Reservoir formed from lake by levees around marsh areas and natural outlet. Usable capacity, 20,000 acre-ft (24.7 hm³) between elevations 1,410 ft (430 m), natural lake level, and 1,440 ft (439 m). Storage began Apr. 9, 1955. Storage in reservoir obtained from Colby Lake during periods of high flow; release from storage returned to Colby Lake to maintain lake elevation during diversion for iron-ore processing. Diversion began Feb. 7, 1956. Some seepage losses from reservoir bypass station. Flow also affected by mining activities in Second Creek basin. AVERAGE DISCHARGE (adjusted for storage and diversion).--40 years, 126 ft 3 /s (3.568 m 3 /s), 10.63 in/yr (270 mm/yr). EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,230 ft³/s (91.5 m³/s) May 10, 1950, gage height, 7.86 ft (2.396 m); minimum daily, 2.2 ft³/s (0.062 m³/s) Jan. 30, 31, 1961; minimum gage height, 0.88 ft (0.268 m) Mar. 2, 1963. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 700 ft 3 /s (19.8 m 3 /s) Apr. 27, May 14, gage height, 4.72 ft (1.439 m); minimum daily, 9.8 ft 3 /s (0.28 m 3 /s) Mar. 9. DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 MEAN VALUES JUL AUG SEP DAY OCT NOV DEC JAN FEB MAR APR MAY JUN 68 66 63 85 53 524 60 61 19 9.8 55 65 626 120 515 14 18 95 hh an 38 84.4 TOTAL 508.8 MEAN 93.4 26.1 22.3 16.4 60.3 17.7 23 MAX 9.8 +69.5 +14.5 +8.47 +1.81 +1.19 +91.7 +20.9 +16.3 +17.9 +13.9 +11.4 +0.01 MEAN t 74.8 34.6 24.1 17.7 17.6 .46 .11 .76 CFSM I 1.01 .21 .15 .11 1.95 2.81 .63 1.46 .89 2.18 1.68 .88 1.00 1.17 .52 .25 .17 .13 3.24 .70 .11 CAL YR 1981 TOTAL 32863.5 MEAN 90.0 MAX 722 MIN 5.6 MEAN ‡ CFSM # 0.71 MIN 9.8 MEAN ‡ CFSM ‡ 0,88 MEAN MAX 693 43852.8 WTR YR 1982 TOTAL [†] Change in contents in Partridge Reservoir and diversion to iron-ore processing plant, equivalent in cubic feet per second; furnished by Erie Mining Co. Adjusted for change in contents and diversion. #### 04016500 ST. LOUIS RIVER NEAR AURORA, MN LOCATION.--Lat 47°29'30", long 92°14'20", in NW&SW& sec.22, T.58 N., R.15 W., St. Louis County, Hydrologic Unit 04010201, on left bank at upstream side of highway bridge, 0.8 mi (1.3 km) downstream from Partridge River and 1.5 mi (2.4 km) south of Aurora. DRAINAGE AREA .-- 290 mi2 (751 km2) of which 13.3 mi2 (34.4 km2) is noncontributing. PERIOD OF RECORD. -- August 1942 to current year. REVISED RECORDS.--WSP 1337: 1950. WDR MN-77-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 1,371.24 ft (417.954 m) National Geodetic Vertical Datum of 1929. Prior to Aug. 26, 1944, nonrecording gage at same site and datum. REMARKS.--Records good except those for winter period, which are fair. Flow regulated at times by storage in off-channel Partridge Reservoir, formerly known as Whitewater Lake. Reservoir formed from lake by levees around marsh areas and natural outlet. Available capacity 20,000 acre-ft (24.7 hm²) between elevations 1,410 ft (430 m), natural lake level, and 1,440 ft (439 m). Storage in reservoir obtained from Colby Lake during periods of high flow; release from storage returned to Colby Lake to maintain lake elevation during diversion for iron-ore processing. Diversion began Feb. 7, 1956. Some seepage losses from reservoir enter above station. Flow also affected by mining activities in Second Creek (station 04015500) basin. AVERAGE DISCHARGE (adjusted for storage and diversion).--40 years, 246 ft 3 /s (6.967 m 3 /s), 11.52 in/yr (293 mm/yr). EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 5,380 ft 3 /s (152 m 3 /s) May 14, 1950, gage height, 8.37 ft (2.551 m); minimum daily, 4.0 ft 3 /s (0.11 m 3 /s) Jan. 29 to Feb. 10, 1977. DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,440 ft 3 /s (40.8 m 3 /s) May 14, gage height, 4.22 ft (1.286 m); minimum daily, 28 ft 3 /s (0.79 m 3 /s) Mar. 6-8. | | | DIDOMINI | , 001 | .10 11111 1 | . Hr. Dijoc | MEAN VAL | UES | 100811 1701 | 10 55115 | | • | | |---
--|---|--|--|---|--|--|--|---|---|--|---| | DAY | OCT | NOA | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 67
62
62
89
100 | 301
287
277
261
231 | 92
93
93
85
83 | 52
52
51
50
49 | 35
34
34
34
33 | 29
29
29
29
29 | 70
90
110
120
115 | 1020
940
861
877
995 | 294
265
238
217
198 | 84
79
111
106
133 | 237
216
204
189
173 | 215
225
222
223
219 | | 6
7
8
9
10 | 125
116
108
114
124 | 221
223
228
213
189 | 83
79
76
70
67 | 48
47
47
46
46 | 33
33
32
32
32 | 28
28
28
29
30 | 110
105
100
100 | 1100
1150
1150
1130
1180 | 180
171
159
162
190 | 183
277
361
492
716 | 172
188
234
256
268 | 194
166
156
152
151 | | 11
12
13
14
15 | 125
121
142
207
234 | 170
160
154
150
147 | 70
73
72
70
67 | 45
45
44
44
43 | 31
31
31
31
30 | 32
35
38
42
45 | 100
105
110
150
250 | 1240
1250
1350
1420
1410 | 198
217
224
226
231 | 897
979
984
991
981 | 315
332
340
327
305 | 154
202
278
321
369 | | 16
17
18
19
20 | 253
298
357
373
408 | 143
137
132
124
117 | 63
62
62
62
61 | 43
42
42
41
41 | 30
30
30
30
30 | 44
43
42
40
38 | 451
588
592
546
530 | 1350
1300
1280
1210
1130 | 224
215
202
190
179 | 953
890
802
726
647 | 266
243
242
249
240 | 381
405
392
404
408 | | 21
22
23
24
25 | 421
405
443
454
434 | 118
107
106
103
103 | 60
59
58
58
57 | 40
40
39
39
38 | 30
30
30
30
29 | 37
37
37
38
39 | 552
682
820
950
1070 | 1060
978
884
781
683 | 166
153
140
124
116 | 580
522
481
460
431 | 244
308
343
354
343 | 394
369
346
327
313 | | 26
27
28
29
30
31 | 408
376
344
319
318
311 | 108
109
104
98
93 | 56
55
55
54
54
53 | 38
37
37
36
36
35 | 29
29
29
 | 40
43
45
47
50
60 | 1150
1190
1200
1170
1100 | 600
528
462
404
359
325 | 112
104
100
101
91 | 396
362
330
316
291
258 | 323
295
270
255
240 | 297
284
273
270
281 | | TOTAL MEAN MAX MIN + MEAN \$ CFSM \$ IN. \$ | 7718
249
454
62
+69.5
318
1.10
1.27 | 4914
164
301
93
+14.5
178
.61 | 2102
67.8
93
53
+8.47
76.3
.26 | 1333
43.0
52
35
+1.81
44.8
.15 | 872
31.1
35
29
+0.01
31.2
.11 | 1160
37.4
60
28
+1.19
38.6
.13 | 14326
478
1200
70
+91.7
569
1.96
2.19 | 981
1420
325
+20.9
1002 | 5387
180
294
91
+16.3
196
.68 | 15819
510
991
79
+17.9
528
1.82
2.10 | 8199
264
354
172
+13.9
278
.96
1.11 | 8391
280
408
151
+11.4
291
1.00 | | CAL YR
WTR YR | 1981 TOTA | | MEAN 2 | 11 MAX
76 MAX | 1370
1420 | MIN 23
MIN 28 | MEAN ‡
MEAN ‡ | 235 CFSM
298 CFSM | | IN ‡ | 11.02
13.96 | | [†] Change in contents in Partridge Reservoir and diversion to iron-ore processing plant, equivalent in cubic feet per second; furnished by Erie Mining Co. ‡ Adjusted for change in contents and diversion. # 04018750 ST. LOUIS RIVER AT FORBES, MN LOCATION.--Lat 47° 21'48", long 92°35'56", in NEASEA sec.3, T.56 N., R.18 W., St. Louis County, Hydrologic Unit 04010201, on right bank at downstream side of highway bridge, 0.5 mi (0.8 km) downstream from Eveleth Taconite Company dam, 0.6 mi (1.0 km) south of Forbes, 1.8 mi (2.9 km) upstream from Elbow Creek. DRAINAGE AREA.--713 mi² (1,847 km²). PERIOD OF RECORD. -- August 1964 to current year. GAGE.--Water-stage recorder. Datum of gage is 1,293.11 ft (394.140 m) National Geodetic Vertical Datum of 1929. Prior to Oct. 28, 1964, nonrecording gage at same site and datum. REMARKS.--Records good except those for winter periods, which are poor. Natural flow of stream affected by continually changing iron-mining activities that include diversions for iron-ore processing, regulation of storage reservoirs and tailing ponds, and mine pit dewatering. There is some regulation at medium and low flows by Eveleth Taconite Company dam 1.5 mi (2.4 km) upstream. AVERAGE DISCHARGE.--18 years, 546 ft 3 /s (15.46 m 3 /s), 10.40 in/yr (264 mm/yr). EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 6,200 ft³/s (176 m³/s) Apr. 25, 1979, gage height, 17.71 ft (5.398 m); minimum daily, 15 ft³/s (0.42 m³/s) Jan. 9, 1981; minimum gage height, 5.14 ft (1.567 m) Nov. 26, 1972. EXTREMES FOR CURRENT YEAR.—Maximum discharge, 3,010 ft 3 /s (85.2 m 3 /s) May 19, gage height, 12.66 ft (3,859 m); maximum gage height, 15.02 ft (4.578 m) Apr. 20 (backwater from ice); minimum daily discharge, 30 ft 3 /s (0.85 m 3 /s) Mar. 27, 29; minimum gage height, 5.31 ft (1.618 m) Dec. 7, 9, 15. | | | DISCHARG | E, IN CU | BIC FEET | PER SEC | OND, WATEI
MEAN VAL | R YEAR OCTO | OBER 1981 | TO SEPTE | MBER 1982 | | | |--|--|---------------------------------|--|----------------------------------|---------------------------------|---|---|--|-----------------------------------|--|--|-----------------------------------| | DAY | OCT | NOA | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 129
164
168
244
322 | 579
556
537
496
478 | 220
228
219
257
135 | 115
110
110
105
105 | 80
80
75
75
75 | 70
70
70
70
60 | 60
150
170
150
150 | 2200
2050
1890
1870
2140 | 874
722
680
504
624 | 264
256
346
482
588 | 478
447
425
403
380 | 376
359
360
351
340 | | 6
7
8
9
10 | 309
332
331
324
346 | 441
412
404
392
366 | 246
178
216
46
206 | 105
150
50
120
100 | 75
75
75
75
75 | 60
70
90
60
50 | 140
140
140
130
130 | 2320
2240
2230
2190
2280 | 573
350
504
419
566 | 740
909
951
1120
1680 | 375
393
405
433
439 | 332
308
287
270
266 | | 11
12
13
14
15 | 372
370
385
539
610 | 340
318
309
297
289 | 268
110
188
268
43 | 95
95
100
95
95 | 75
75
75
75
75 | 100
40
80
90
60 | 130
130
150
180
250 | 2490
2510
2610
2790
2900 | 428
559
559
374
552 | 1810
1870
1870
1840
1790 | 446
490
577
634
598 | 266
305
478
587
600 | | 16
17
18
19
20 | 599
653
863
934
937 | 281
272
269
257
245 | 280
300
50
300
170 | 90
90
90
90
85 | 75
75
75
70
70 | 70
100
60
70
100 | 400
1000
1300
1500
1700 | 2910
2860
2940
3000
2890 | 591
444
473
514
507 | 1760
1680
1550
1400
1270 | 541
483
435
434
419 | 645
685
761
769
756 | | 21
22
23
24
25 | 983
986
950
944
930 | 203
66
344
156
102 | 160
200
170
150
200 | 85
85
85
85 | 70
70
70
70
70 | 50
120
35
110
70 | 1900
2100
2190
2310
2380 | 2690
2480
2280
2080
1870 | 362
460
437
245
381 | 1130
1020
878
840
808 | 398
438
519
532
543 | 755
711
650
634
595 | | 26
27
28
29
30
31 | 868
824
823
632
692
615 | 265
282
253
228
235 | 150
130
125
120
120
115 | 80
80
80
80
80 | 70
70
70
 | 110
30
120
30
140
100 | 2460
2460
2440
2400
2320 | 1680
1490
1360
1210
868
975 | 374
350
173
353
297 | 744
679
617
581
572
525 | 518
485
449
422
403
390 | 552
515
480
450
420 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 18178
586
986
129
.82 | 9672
322
579
66
•45 | 5568
180
300
43
.25
.29 | 2900
93.5
150
50
.13 | 2060
73.6
80
70
.10 | 2355
76.0
140
30
.11
.12 | 31060
1035
2460
60
1.45
1.62 | 68293
2203
3000
868
3.09
3.56 | 14249
475
874
173
.67 | 32570
1051
1870
256
1.47
1.70 | 14332
462
634
375
•65
•75 | 14863
495
769
266
•69 | | CAL YR
WTR YR | | | MEAN 5
MEAN 5 | | 2840
3000 | MIN 15
MIN 30 | CFSM .71
CFSM .83 | IN 9.0
IN 11. | | | | | NOTE.--No gage-height record Jan. 14 to
Mar. 3. #### 04024000 ST. LOHIS RIVER AT SCANLON, MN LOCATION.--Lat 46°42'12", long 92°25'07", in NW4 sec.30, T.49 N., R.16 W., Carlton County, Hydrologic Unit 04010201, on right bank 25 ft (8 m) downstream from lower bridge on U.S. Highway 61 at Scanlon, 0.6 mi (1.0 km) downstream from Minnesota Power and Light Co. powerplant, 3 mi (5 km) upstream from Thomson Reservoir, and 3.2 mi (5.1 km) upstream from Midway River. DRAINAGE AREA.--3,430 mi² (8,880 km²), approximately. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD .-- January 1908 to current year. Monthly discharge only for some periods published in WSP 1307. Published as "near Thomson" 1908-50. REVISED RECORDS .-- WSP 1337: 1911-12. GAGE.--Water-stage recorder. Datum of gage is 1,101.23 ft (335.655 m) National Geodetic Vertical Datum of 1929. Oct. 5, 1909, to Sept. 5, 1914, nonrecording gage 3 mi (5 km) downstream and 50 ft (15 m) below powerplant at datum about 420 ft (128 m) lower. Sept. 6, 1914, to Aug. 4, 1953, powerplant record at Thomson hydroelectric plant. REMARKS.--Records good. Diurnal fluctuation caused by powerplant upstream. Flow regulated by Whiteface Reservoir and Boulder, Island, Rice and Fish Lakes, combined capacity, 332,160 acre-ft (410 hm³); the water-discharge table shows the monthly change in contents (†). AVERAGE DISCHARGE (UNADJUSTED).--74 years, 2,300 ft³/s (65.14 m³/s), 9.11 in/yr (231 mm/yr). EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 37,900 ft³/s (1,070 m³/s) May 9, 1950; maximum gage height, 15.8 ft (4.816 m) May 9, 1950, from Minnesota Department of Transportation (discharge uncertain); minimum discharge, 54 ft³/s (1.53 m³/s) July 30, 1980; minimum daily, 88 ft³/s (2.49 m³/s) Aug. 24, 1977. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 26,700 ft 3 /s (756 m 3 /s) Apr. 18, gage height, 12.20 ft (3.719 m); minimum daily, 794 ft 3 /s (22.5 m 3 /s) Sept. 9. DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 MEAN VALUES DAY OCT NOV DEC JAN FEB APR MAY JUN AUG MAR 1 2 1800 6060 Ŕ 1820 1210 794 1800 3680 22 1500 1 200 13200 8910 4480 1400 1400 2060 80.20 1250 ___ TOTAL MEAN 2770 794 MAX MIN -1025 +677 -456 -922 -1000 -1080 -2333 +1967 -37 +212 -356 +266 MEAN ‡ 1.31 .13 .12 3.23 3.27 CFSM ‡ .44 .14 .10 .44 1.48 •38 .58 1.51 .49 .13 3.78 .44 .65 CAL YR 1981 TOTAL WTR YR 1982 TOTAL 1199950 3288 MEAN # 2474 MEAN # 2956 CFSM # 0.72 CFSM # 0.86 MEAN MAX MIN 430 IN. # 9.79 IN. # 11.70 MAX MIN 794 MEAN [†] Change in contents, equivalent in cubic feet per second, in Whiteface Reservoir and Boulder, Island, Rice, and Fish Lakes; records furnished by Minnesota Power and Light Co. [#] Adjusted for change in contents. # $04024000\,$ ST. LOUIS RIVER AT SCANLON, MN--Continued (National stream-quality accounting network station) #### WATER-QUALITY RECORDS LOCATION .-- Samples collected at cableway 0.75 mi (1.21 km) downstream. PERIOD OF RECORD. -- Water years 1958-66, 1968 to current year. PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE: October 1980 to September 1982 (discontinued). WATER TEMPERATURES: October 1980 to September 1982 (discontinued). INSTRUMENTATION. -- Water-quality minimonitor since October 1980. REMARKS.--Letter K indicates non-ideal colony count. No current extremes for specific conductance are given because more than 80 percent of the record is missing. EXTREMES FOR PERIOD OF DAILY RECORD . -- SPECIFIC CONDUCTANCE: Maximum, 336 micromhos Aug. 14, 1981; minimum, 68 micromhos June 10, 1981. WATER TEMPERATURES: Maximum, 25.0°C July 12-14, 1981; minimum, 0.0°C several days during winter period. EXTREMES FOR CURRENT YEAR.-WATER TEMPERATURES: Maximum, 23.0°C July 6, Aug. 18, 19; minimum, 0.0°C several days during winter period. | | | | - ' | | | | | | | | | | |-----------|---|--|--|---|------------------------------------|--|--|---|---|---|--|--| | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS)
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS)
(00095) | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(UMHOS)
(90095) | PH
(UNITS)
(00400) | PH
LAB
(UNITS)
(00403) | TEMPER-
ATURE,
AIR
(DEG C)
(00020) | TEMPER-
ATURE
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | TUR-
BID-
ITY
(NTU)
(00076) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301) | | OCT 20 | 1515 | 6770 | 115 | 105 | 7.6 | 7.2 | 2.0 | 7.0 | 731 | 6.5 | 11.3 | 97 | | JAN
13 | 1530 | 1150 | 147 | 138 | | 7.6 | -13.0 | .0 | 728 | 3.1 | 12.8 | 92 | | MAR
09 | 1445 | 1090 | 105 | 141 | 7.4 | 7 - 4 | -20.0 | .0 | 739 | 2.6 | 11.5 | 81 | | APR
20 | 1100 | 19700 | 75 | 68 | 7.2 | 7.0 | 3.0 | 2.0 | 733 | 20 | 13.4 | 101 | | JUN
21 | 1345 | 1640 | 160 | 143 | 7.9 | 7.8 | 23.0 | 18.0 | 736 | 2.1 | 9.0 | 99 | | AUG
09 | 1430 | 2130 | 145 | 133 | 7.4 | 7.4 | 15.0 | 20.0 | 729 | 4.5 | 7.6 | 88 | | | | | | | | | | | 1 | | | | | | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./ | STREP-
TOCOCCI
FECAL,
KF AGAR
(COLS.
PER | HARD-
NESS
(MG/L
AS | HARD-
NESS
NONCAR-
BONATE
(MG/L
AS | CALCIUM
DIS-
SOLVED
(MG/L | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L | SODIUM,
DIS-
SOLVED
(MG/L | SODIUM
AD-
SORP-
TION
RATIO | POTAS-
SIUM,
DIS-
SOLVED
(MG/L | ALKA-
LINITY
LAB
(MG/L
AS | SULFATE
DIS-
SOLVED
(MG/L | CHLO-
RIDE,
DIS-
SOLVED
(MG/L | | | FORM. | TOCOCCI | | NESS | | MAGNE- | | SODIUM | POTAS- | ALKA- | | CHLO- | |-------|---------|---------|---------|-----------------|---------|---------|---------|---------|----------|---------|---------|---------| | | FECAL, | FECAL, | HARD- | NESS
NONCAR- | CALCIUM | SIUM. | SODIUM. | AD- | SIUM. | LINITY | SULFATE | RIDE. | | | 0.7 | KF AGAR | NESS | BONATE | DIS- | DIS- | DIS- | SORP- | DIS- | LAB | DIS- | DIS- | | | UM-MF | (COLS. | (MG/L | (MG/L | SOLVED | SOLVED | SOLVED | TION | SOLVED | (MG/L | SOLVED | SOLVED | | | (COLS./ | PER. | AS | AS | (MG/L | (MG/L | (MG/L | RATIO | (MG/L | AS | (MG/L | (MG/L | | DATE | 100 ML) | 100 ML) | CACO3) | CACO3) | AS CA) | AS MG) | AS NA) | 111110 | AS K) | CACO3) | AS SO4) | AS CL) | | 21112 | (31625) | (31673) | (00900) | (95902) | (00915) | (00925) | (00930) | (00931) | (00935) | (90410) | (00945) | (00940) | | | (3) | (3==13) | ()) | ()))()) | (00)1) | (00)2) | (00)50/ | (00)5-7 | (,,,,,,, | (30,, | () | (0-), | | OCT | | | | | | | | | | | | | | 20 | K170 | 1000 | 51 | 14 | 12 | 5.2 | 4.3 | •3 | 1.2 | 37 | 8.9 | 4.2 | | JAN | | | | | | | | | | | | | | 13 | 48 | 22 | 62 | 10 | 14 | 6.5 | 4.0 | .2 | •9 | 52 | 9.3 | 3.7 | | MAR | | | | | | | | | | | | | | 09 | K10 | 96 | 66 | 8.0 | 15 | 7.0 | 5.3 | •3 | 1.0 | 58 | 11 | 3.8 | | APR | | | | | | | | | | | | | | 20 | 94 | K610 | 32 | 7.0 | 7.5 | 3.3 | 2.1 | • 2 | 1.3 | 25 | 6.0 | 2.3 | | JUN | | | | | | | | | | | | | | 21 | 42 | 56 | 61 | 6.0 | 14 | 6.4 | 4.3 | • 2 | 1.1 | 55 | 10 | 4.0 | | AUG | | | | | | | | | _ | | | | | 09 | 43 | 310 | 66 | 12 | 15 | 6.9 | 3•9 | . 2 | .6 | 54 | 9.0 | 3.5 | | | | | | | | | | | | | | | # 04024000 ST. LOUIS RIVER AT SCANLON, MN--Continued | DATE | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY)
(70302) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHOS-
PHORUS,
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS,
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS,
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | |-----------|---|--|---|--|--|--|--|---|--|---|---| | OCT | | | | | | | | | | | | | 20 | <.1 | 8.7 | 118 | 67 | 2160 | .31 | .040 | •59 | .050 | <.010 | <.010 | | JAN
13 | .1 | 8.3 | 103 | 79 | 320 | .24 | .060 | .65 | .020 | .010 | .010 | | MAR | | | 5 | ,, | 324 | • | •••• | ••• | ••• | •••• | | | 09
APR | .1 | 9.0 | 114 | 87 | 336 | .36 | .080 | •63 | .030 | .020 | .010 | | 20 | <.1 | 5.4 | 75 | 43 | 3990 | .19 | .110 | •53 | .140 | .020 | .010 | | JUN | | | | | | | | | | | | | 21
AUG | .1 | 5•7 | 111 | 79 | 492 | <.10 | <.010 | •50 | .030 | .020 | .020 | | 09 | .1 | 8.4 | 124 | 81 | 713 | .25 | .040 | .90 | .040 | .030 | •030 | | DATE | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) |
SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | SED.
SUSP.
SIEVE
DIAM.
% FINER
THAN
.062 MM
(70331) | |------------------|---|---|--| | OCT
20
JAN | 80 | 1460 | 48 | | 13
MAR | 13 | 40 | 95 | | 09
APR | 13 | 38 | 96 | | 20 | 100 | 5320 | 88 | | JUN
21
AUG | 29 | 128 | 54 | | 09 | 37 | 213 | 92 | | DATE | TIME | ARSENIC
TOTAL
(UG/L
AS AS)
(01002) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS)
(01000) | BARIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BA)
(01007) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD)
(01027) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | CHRO-MIUM,
TOTAL
RECOV-ERABLE
(UG/L
AS CR)
(01034) | CHRO-MIUM,
DIS-SOLVED (UG/L
AS CR) | COBALT,
TOTAL
RECOV-
ERABLE
(UG/L
AS CO)
(01037) | |------------------------|---|--|---|--|---|--|---|--|---|--| | OCT
20
JAN | 1515 | 1 | 0 | 100 | 49 | <1 | 1 | 20 | 10 | <1 | | 13
APR | 1530 | 1 | 0 | 100 | 19 | 1 | <1 | 30 | 20 | 1 | | 20
AUG | 1100 | 1 | 1 | <100 | 16 | 1 | <1 | 20 | 10 | 2 | | 09 | 1430 | 2 | 2 | 100 | 19 | <1 | <1 | 20 | 20 | <1 | | | | | | | | | | | | | | D ATE | COBALT,
DIS-
SOLVED
(UG/L
AS CO)
(01035) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU)
(01042) | COPPER, DIS- SOLVED (UG/L AS CU) (01040) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE)
(01045) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB)
(01051) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
(01055) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG)
(71900) | | OCT
20
JAN
13 | DIS-
SOLVED
(UG/L
AS CO) | TOTAL RECOV-
ERABLE (UG/L
AS CU) | DIS-
SOLVED
(UG/L
AS CU) | TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | DIS-
SOLVED
(UG/L
AS FE) | TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) | | OCT
20
JAN | DIS-
SOLVED
(UG/L
AS CO)
(01035) | TOTAL RECOV-
ERABLE (UG/L
AS CU) (01042) | DIS-
SOLVED
(UG/L
AS CU)
(01040) | TOTAL
RECOV-
ERABLE
(UG/L
AS FE)
(01045) | DIS-
SOLVED
(UG/L
AS FE)
(01046) | TOTAL
RECOV-
ERABLE
(UG/L
AS PB)
(01051) | DIS-
SOLVED
(UG/L
AS PB)
(01049) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
(01055) | NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG)
(71900) | # 04024000 ST. LOUIS RIVER AT SCANLON, MN--Continued | MERGURN TOTAL NICKEL, SILE SILVER, | | | | WAL | וייונו עע | OHLI | II DA | тн, | MWITH | I IIIM | 11 001 | COLIN | 1901 | . 10 | DUITE | 11001 | 1 1 9 0 2 | • | | | | |--|------|--------------------|--|---------------------------------------|------------------------------------|--------------------------------|-----------------------------------|---------------------------------------|--|--|--|---|---|--------------------------------|-----------------------------------|--------------------------------|------------------------------------|------------------------------------|---|--|-----| | 20 | | re | DIS
SOLV
(UG,
AS) | S-
VED
/L
HG) | TOT
REC
ERA
(UG
AS | AL
OV-
BLE
/L
NI) | DIS
SOL
(UG
AS | -
VED
/L
NI) | NIU
TOT
(UG
AS | JM,
PAL
S/L
SE) | NIU
DI
SOU
(UC
AS | JM,
IS-
LVED
I/L
SE) | TOT
REC
ERA
(UG
AS | AL
OV-
BLE
/L
AG) | DI
SOL
(UG
AS | S-
VED
/L
AG) | TOT
REC
ERA
(UG
AS | TAL
COV-
ABLE
J/L
ZN) | DI
SOL
(UG
AS | S-
VED
/L
ZN) | | | 13 < 1 | | | | .2 | | 2 | | 2 | | <1 | | <1 | | <1 | | <1 | | 40 | | 17 | | | MAPRIL MARRI MAPRIL MARRI MAPRIL MARRI | JAN | | | | | 4 | | | | | | | | <1 | | <1 | | 70 | | | | | AND O9 <.1 6 2 <1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | 9 | | 5 | | <1 | | <1 | | <1 | | <1 | | 20 | | | | | NAPH- | AUG | | | <.1 | | | | | | <1 | | <1 | | <1 | | <1 | | 40 | | | | | Date PCB | | | | | | T
LE | HA-
NES, | | | сн | ilor- | | | | | | | Γ |)I <i>-</i> | DI- | | | 09 1445 | | TI | ME | TO'l | ral
/L) | CH
TO
(UG | LOR.
TAL
/L) | TO
(U | TAL
G/L) | DA
TO
(UG | NE,
TAL
(/L) | TO
(U | TAĹ
G/L) | OT
U) | TAL
G/L) | OT
(U | TAL
G/L) | AZI
TC
U) | NON,
TAL
IG/L) | ELDRI
TOTAL
(UG/L | | | 20 1100 <.10 <.10 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 | 09 | 14 | 45 | < | (.10 | | <.10 | | <.01 | | <.10 | | <.01 | | <.01 | | <.01 | | .01 | <.0 | 1 | | SENDO- | | 11 | 00 | < | <.10 | | <.10 | | <.01 | | <.10 | | <.01 | | <.01 | | <.01 | | | <.0 | 1 | | OPT Coll C | DATE | SULF
TOT
(UG | AN,
AL
/L) | TOT
(U) | TAL
3/L) | TO
(U | TAL
G/L) | CH
TO
(U | LOR,
TAL
G/L) | CH
EPO
TO
(U | LOR
XIDE
TAL
IG/L) | OT
U) | TAL
G/L) | TH
TO
(U | ION,
TAL
IG/L) | 0
CH
TO
U) |
XY-
ILOR,
TAL
IG/L) | PA
TH
TC
(U | RA-
IION,
TAL
IG/L) | TRI-
THION
TOTAL
(UG/L | I, | | A | 09 | < | .01 | | <.01 | | <.01 | | <.01 | | <.01 | | <.01 | | <.01 | | <.01 | | <.01 | <.0 |) 1 | | MIREX | | < | .01 | < | <.01 | | | | <.01 | | <.01 | | <.01 | | | | <.01 | | | - | | | 09 <.01 <.01 <.01 <.01 <.01 <.01 <.01 < | TAC | | TOI
(UG) | CAĹ
/L) | THI
TOT
(UG | ON,
AL
/L) | THA
TOT
(UG | NE
AL
/L) | APHE
TOT
(UG | ENE,
PAL
P/L) | THI
THI
(UC | RI-
ION
H/L) | TOT
(UG | AL
/L) | TOT
(UG/ | AL
L) | TOT
(UC | 'AL
3/L) | TOT
(UG | AL
/L) | | | APR 20 <.01 | | | ۲. | .01 | < | -01 | < | .01 | | <0 | | (.01 | - | .01 | - | .01 | < | (.01 | | -01 | | | PCB, PCN, ALDRIN, DANE, DDD, DDE, DDT, ELDRIN, TOTAL TERIAL TERIA | APR | | | | ` | | | | | | | | ` | | | | | | | | | | PCB, TOTAL TERIAL TOTAL TO | 20. | • | `` | .01 | | | ` | •10 | | /1 | | | | •02 | | •01 | Ì | 01 | ` | •01 | | | OCT 20 1515 3 <1.0 <.1 <1.0 <.1 <.1 <.1 <.1 <.1 <.1 APR 20 1100 24 <1.0 <.1 <1.0 .2 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 | DAT | TE. | TIN | 1E | TOT
IN BO
TOM
TER
(UG/ | AL
OT-
MA-
IAL
KG) | TOT
IN B
TOM
TER
(UG/ | AL
OT-
MA-
IAL
KG) | TOT
IN B
TOM
TER
(UG/ | CAL
BOT-
MA-
RIAL
(KG) | DAN
TOT
IN E
TOM
TEF
(UG/ | IE,
TAL
BOT-
MA-
RIAL
(KG) | TOT
IN B
TOM
TER
(UG/ | AL
OT-
MA-
IAL
KG) | TOT
IN B
TOM
TER
(UG/ | AL
OT-
MA-
IAL
KG) | TOT
IN E
TOM
TER
(UG/ | PAL
BOT-
MA-
RIAL
'KG) | ELDR
TOT
IN B
TOM
TER
(UG/ | IN,
OT-
MA-
IAL
KG) | | | APR 20 1100 24 <1.0 <.1 <1.0 .2 <.1 <.1 <.1 ENDO- SULFAN, ENDRIN, CHLOR, CHLOR LINDANE OXY- TOTAL TOTAL TOTAL EPOXIDE TOTAL OTT. IN IN BOT- IN BOT- IN BOT- TOM MA- TOM MA- TOM MA- TERIAL TERIAL TERIAL MATL. TERIAL DATE (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG/KG) (39389) (39393) (39413) (39423) (39343) (39481) (39758) (81886) (39403) OCT 20 <1 <1 <1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 | | | | | | | | | | | ,,,, | , | | | , | | | | | | | | ENDO- SULFAN, ENDRIN, CHLOR, CHLOR LINDANE OXY- TOTAL TOTAL TOTAL EPOXIDE TOTAL CHLOR, TOTAL THANE TOTAL IN BOT- TOM MA- TOM MA- TERIAL TERIAL TERIAL MATL. TERIAL MATL. TERIAL MATEL TERIAL DATE (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG/KG) (39389) (39393) (39413) (39423) (39343) (39481) (39758) (81886) (39403) OCT 20 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 | APR | SULFAN, ENDRIN, CHLOR, CHLOR LINDANE OXY- MIREX, PER- PHENE, TOTAL TOTAL TOTAL EPOXIDE TOTAL CHLOR, TOTAL THANE TOTAL IN BOT- IN BOT- TOT. IN IN BOT- TOT. IN IN BOT- IN BOT- TOT. IN IN BOT- TOM MA- BOTTOM BOT | 20. | • • • | | | | 24 | | | | | < | (1.0 | | | | <.1 | | <.1 | | | | | 20 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 | DAT | 'E | SULFA
TOTA
IN BO
TOM N
TERI
(UG/K | AN,
AL
OT-
MA-
EAL
(G) | TOT. IN BOTOM ITEM TER (UG/I | AL
OT-
MA-
IAL
KG) | TOT IN B TOM TER | OR,
AL
OT-
MA-
IAL
KG) | CHL
EPOX
TOT.
BOT
MA
(UG/ | OR
IDE
IN
TOM
(TL.
(KG) | TOT
IN E
TOM
TEF
(UG/ | AL
BOT-
MA-
RIAL
KG) | OXY
CHL
TOT.
BOT
MA
(UG/ | OR,
IN
TOM
TL. | TOT
IN B
TOM
TER
(UG/ | AL
OT-
MA-
IAL
KG) | THAN
IN
BOTT
MATE
(UG/ | EOM
CRIL
(KG) | PHE
TOT
IN B
TOM
TER
(UG/ | NE,
AL
OT-
MA-
LIAL
KG) | | | APR | | | | < . 1 | | <.1 | | <.1 | | <.1 | | <.1 | | <.1 | | <.1 | (| (.10 | | 1.0 | | | | APR | # 04024000 ST. LOUIS RIVER AT SCANLON, MN--Continued SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | | DID | 01110 00 | | ((III ONO III O D) | ON AL Z |) DOG . 0) | , | 001000 | | | -, | | |---|---------------------------------|--|-------------------------------------|--|---|---|--|----------------------------------|--|------------|------------|---------------------------------| | DAY | MAX | MIN | MEAN | XAM | MIN | MEAN | MAX | MIN | MEAN | MAX | MIN | MEAN | | | | OCTOBE | R | | NOVEMBE | R | | DECEMBE | R | | JANUAR | Y | | | | | | | | | | | | . = 6 | | | | 1 | 175
170 | 152
158 | 158
162 | 135
128 | 122 | 130
124 | 137
138 | 128
126 | 132
130 | 176
160 | 140
137 | 144
150 | | 2
3
4 | 177 | 158
156 | 164 | 131 | 117
124 | 128 | 149 | 126 | 133 | 162 | 137
134 | 150
142 | | 4 | 184
201 | 168 | 176 | 148
138 | 117
123 | 126 | 143 | 131
132 | 133
137 | 162
160 | 136
138 | 142
147 | | 5 | 201 | 175 | 185 | 130 | | 129 | 153 | | 131 | 100 | 130 | | | 6 | 193 | 177 | 182 | 137 | 128 | 132 | 141 | 133 | 137 | 154 | 128 | 134
138 | | 7
8 | 197
191 | 182
163 | 190
181 | 141
141 | 136
135 | 139
138 | 140
141 | 134
137 | 137
139 | 145
142 | 134
140 | 141 | | 9 | 166 | 156 | 161 | 138 | 134 | 136 | 159 | 137 | 143 | 144 | 134 | 140 | | 10 | 159 | 153 | 158 | 141 | 133 | 136 | 144 | 139 | 141 | 152 | 134 | 141 | | 11 | 159 | 144 | 154 | 138 | 137 | 137 | 146 | 142 | 144 | 149 | 137 | 141 | | 12 | 146
153 | 142
144 | 145
147 | 153
149 | 137
138 | 140 | 150
159 | 146
146 | 148
149 | 162
159 | 139
142 | 148
145
146 | | 13
14 | 145 | 132 | 140 | 144 | 139 | 141 | 151 | 149 | 150 | 149 | 142 | 146 | | 15 | 155 | 123 | 134 | 148 | 143 | 146 | 150 | 149 | 150 | 152 | 149 | 151 | | 16 | 153 | 119 | 131 | 158 | 133 | 144 | 169 | 148 | 155 | 157 | 150 | 152 | | 17
18 | 147 | 120 | 128 | 157 | 134 | 140 | 162 | 145 | 152
158 | 160 | 156 | 158 | | 18
19 | 133 | 121
111 | 126
125 | 158
148 | 143
138 | 150
145 | 160
161 | 155
150 | 158 | 162
202 | 156
162 | 172 | | 19
20 | 139
128 | 114 | 121 | 145 | 138
142 | 144 | 176 | 148 | 155 | 164 | 153 | 152
158
159
172
156 | | 21 | 137 | 122 | 132 | 143 | 140 | 142 | 171 | 153 | 156 | 154 | 150 | | | 22 | 140 | 122 | 133 | 143 | 140 | 141 | 153 | 143 | 147 | 162 | 154 | 152
158
161 | | 23
24 | 117
122 | 101
115 | 109 | 141
139 | 139
135 | 140 | 174
175 | 144 | 150
156 | 163
161 | 157
155 | 161 | | 25 | 128 | 120 | 119
123 | 139 | 132 | 137
135 | 159 | 153
142 | 150 | 188 | 157 | 157
164 | | 26 | | | | | | | | 141 | 145 | 158 | 152 | 156 | | | 126
124 | 122
120 | 124
122 | 135
136 | 133
132 | 134
134 | 151
163 | 146 | 151
146 | 153 | 153
146 | 149 | | 27
28 | 124 | 119 | 122 | 138 | 132
127 | 131 | 151 | 144 | 146 | 148 | 145 | 149
146
149 | | 29
30 | 126
134 | 122
121 | 124
126 | 134
130 | 127
127 | 130
129 | 169
174 | 147
145 | 153
155 | 169
163 | 145
142 | 149 | | 31 | 133 | 124 | 128 | | | | 185 | 137 | 151 | 147 | 145 | 147
146 | | MONTH | 201 | 101 | 143 | 158 | 117 | 137 | 185 | 126 | 146 | 202 | 128 | 149 | | MOIVIII | 201 | 101 | 143 | 1,0 | 111 | 131 | 10) | 120 | 140 | 202 | 120 | 147 | DAY | MAX | MIN | MEAN | | DAY | MAX | | | MAX | | | MAX | | | MAX | | MEAN | | | | FEBRUAR | Y | MAX | MARCH | | | MIN
APRIL | ı | MAX | MIN
MAY | MEAN | | 1 | 149 | FEBRUAR | Y
144 | | MARCH | | | APRIL | | MAX | | MEAN | | 1 2 | 149
154
143 | FEBRUAR
142
142
137 | 144
144
141 | | MARCH | | | | ı | MAX | | MEAN | | 1
2
3
4 | 149
154
143
143 | FEBRUAR
142
142
137
141 | 144
144
141
142 | | MARCH | | | APRIL | | мах | | MEAN | | 1
2
3
4
5 | 149
154
143 | FEBRUAR
142
142
137 | 144
144
141 | | MARCH | | | APRIL | | MAX | | MEAN | | 1
2
3
4
5 | 149
154
143
143
147 | FEBRUAR
142
142
137
141
143 | 144
144
141
142 | | MARCH | | | APRIL | | MAX | | MEAN | | 1
2
3
4
5
6
7
8 | 149
154
143
143
147 | FEBRUAR
142
142
137
141
143 | 144
144
141
142 | | MARCH | | | APRIL | | MAX | | MEAN | | 1
2
3
4
5
6
7
8
9 | 149
154
143
143
147 | FEBRUAR 142 142 137 141 143 | 144
144
141
142
144
 |

 | MARCH | |

 | APRIL | | MAX | | MEAN | | 1
2
3
4
5
6
7
8 | 149
154
143
143
147 | FEBRUAR 142 142 137 141 143 | 144
144
141
142
144
 |

 | MARCH | |

 | APRIL | | MAX | | MEAN | | 1
2
3
4
5
6
7
8
9
10 | 149
154
143
143
147 | FEBRUAR 142 142 137 141 143 | 144
144
141
142
144
 |

150 | MARCH | |

 | APRIL | | MAX | | MEAN | | 1
2
3
4
5
6
7
8
9
10 | 149
154
143
143
147 | FEBRUAR 142 142 137 141 143 | 144
144
141
142
144
 |

150 | MARCH |

127 |

 | APRIL | | MAX | | MEAN | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 149
154
143
143
147 | FEBRUAR 142 142 137 141 143 | 144
144
141
142
144
 |

150
131
132
126 | MARCH |

127
127
123
123 |

 | APRIL | | MAX | | MEAN | | 1
2
3
4
5
6
7
8
9
10 | 149
154
143
143
147 | FEBRUAR 142 142 147 141 143 | 144
144
141
142
144
 |

150
131
132 | MARCH | 127
127
123 |

 | APRIL | | MAX | | MEAN | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 149
154
143
143
147 | FEBRUAR 142 142 137 141 143 | 144
144
141
142
144
 | 150
131
132
126
125 | MARCH | 127
123
123
119 | | APRIL | | MAX | | MEAN | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 149
154
143
143
147 | FEBRUAR 142 147 141 143 | 144
144
141
142
144
 | 150
131
132
126
125 | MARCH |

127
127
123
123
119 |

110 | APRIL | | MAX | | MEAN | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 149
154
143
143
147 | FEBRUAR 142 142 147 141 143 | 144
144
141
142
144
 | 150
131
132
126
125 | MARCH | 127
123
123
119 |

110
79
71 | APRIL |

95
69
70 | MAX | | MEAN | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 149
154
143
143
147 | FEBRUAR 142 147 141 143 | 144
144
141
142
144
 | 150
131
132
126
125 | MARCH 116 118 118 120 110 110 117 | 127
127
123
123
119
113
115
120 |

110 | APRIL | | MAX | | MEAN | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | 149
154
143
143
147 | FEBRUAR 142 142 147 141 143 | 144
144
141
142
144
 | 150
131
132
125
125
125
125 | MARCH 116 118 118 120 110 110 112 117 118 123 | 127
127
123
123
119
113
115
120
121
124 |

110
79
71
81 | APRIL 72 57 69 74 |

95
69
70
76 | MAX | | MEAN | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 149
154
143
143
147 | FEBRUAR 142 142 147 141 143 | 144
144
141
142
144
 | 150
131
132
126
125
127
128
129
129 | MARCH 116 118 118 120 110 112 117 118 123 123 | 127
127
123
123
119
113
115
120
121
124 |

110
79
71
81
84 | APRIL | 95
69
76
81 | MAX | | MEAN | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | 149
154
143
143
147 | FEBRUAR 142 142 143 141 143 | 144
144
141
142
144
 | 150
131
132
125
125
125
125 | MARCH 116 118 118 120 110 110 112 117 118 123 | 127
127
123
123
119
113
115
120
121
124 |

110
79
71
81 | APRIL 72 57 69 74 |

95
69
70
76
81
80
84
94 | MAX | | MEAN | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | 149
154
143
143
147 | FEBRUAR 142 147 141 143 | 144
144
141
142
144
 | 150
131
132
126
125
127
128
129
125
125
125
125 | MARCH 116 118 118 120 110 112 117 118 123 123 120 121 | 127
127
127
123
119
113
115
120
121
124 |

110
79
71
81
84
82
90 | APRIL |

 | MAX | | MEAN | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 223 24 | 149
154
143
143
147 | FEBRUAR 142 142 143 141 143 | 144
144
141
142
144
 | 150
131
132
125
125
125
125
125
127 | MARCH 116 118 118 120 110 110 112 117 118 123 123 121 117 | 127
127
123
123
123
119
113
120
121
124
124
124
124
125 |

110
79
71
81
84
82
90
97 | APRIL |

95
69
70
76
81
80
84
94 | MAX | | MEAN | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 8 19 20 21 22 32 24 25 26 27 | 149
154
143
143
147 | FEBRUAR 142 142 143 141 143 | 144
144
141
142
144
 | 150
131
132
125
125
125
125
125
125
125
126
147
126 | MARCH 116 118 118 120 110 110 1117 118 123 123 123 121 117 123 | 127
127
127
123
123
129
113
120
121
124
124
124
124
125 |

110
79
71
81
84
82
90
97 | APRIL 72 57 69 74 79 78 82 91 96 |

95
69
70
76
81
80
84
98 | MAX | | MEAN | | 1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 17 18 19 20 21 22 33 4 25 26 27 28 | 149
154
143
143
147 | FEBRUAR 142 147 141 143 | 144
144
141
142
144
 | 150
131
132
126
125
127
127
128
128
128
128 | MARCH 116 118 118 120 110 110 112 117 118 123 123 121 117 123 | 127
127
127
123
123
119
113
115
120
121
124
124
124
124
125
126
125 |

110
79
71
81
84
82
90
97
100 | APRIL |

 | MAX | | MEAN | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 32 25 26 27 28 29 30 | 149
154
143
143
147 | FEBRUAR 142 142 143 141 143 | 144
144
141
142
144
 | 150
131
132
125
125
125
125
125
125
126
147
126
128
128
130
132
132
136 | MARCH 116 118 118 120 110 110 110 117 118 123 123 120 121 117 123 | 127
127
127
123
123
119
113
115
120
121
124
124
124
124
125
126
125 |

110
79
71
81
84
82
90
97
100 | APRIL |

95
69
70
76
81
80
84
98
99 | MAX | | MEAN | | 1 2 3 4 5 6 7 8 9 10 11 2 13 4 15 16 17 18 19 20 21 223 24 25 26 27 28 29 | 149
154
143
143
147 | FEBRUAR 142 142 143 141 143 | 144
144
141
142
144
 |

150
131
132
126
125
125
125
125
125
126
147
126
128
128
128
128
128
128 | MARCH 116 118 118 120 110 110 112 117 118 123 123 121 117 123 | 127
127
127
123
123
119
113
115
120
121
124
124
124
124
125
126
125 |

110
79
71
81
84
82
90
97
100 | APRIL |

95
69
70
76
81
80
84
98
99 | MAX | | MEAN | MONTH # 04024000 ST. LOUIS RIVER AT SCANLON, MN--Continued SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | DAY | MAX | MIN | MEAN | |----------------------------------|-----|------|---------------|------------|-------|-----------|--|--|--|---------------------------------|---------------------------------|---------------------------------| | DAI | MAX | | MEAN | MAA | | MEAN | MAA | | | MAA | | | | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMB | ER | | 1
2
3
4 | | | | | | | | | | 144
140
137
138 | 134
137
134
134 | 138
138
136
136 | | 5 | | | | | | | | | | 148 | 135 | 142 | | 6
7
8
9 | | | | | | |

143 | 134 |

138 | 153
136
138
142
141 | 137
130
131
131
131 | 146
133
134
138
135 | | 11
12
13
14
15 | | | | | | | 148
148
146
139
135 | 142
145
139
131
130 | 145
147
142
136
132 | 156
156
145
143
158 | 141
144
134
134
144 | 149
152
137
136
151 | | 16
17
18
19
20 | | | | | | | 137
144
152
152
147 | 133
136
143
146
134 | 135
140
148
149
142 | 167
167
168
153
149 | 158
162
153
143
144 | 164
164
163
147
146 | | 21
22
23
24
25 | | | | | | | 135
132
135
136
137 | 130
129
132
133
134 | 133
130
134
134
135 | 150
144
145
145
146 | 143
142
141
141
140 | 145
143
143
143
143 | | 26
27
28
29
30
31 | | | | | | | 146
151
145
144
142
140 | 134
139
137
139
140
137 | 138
143
140
141
141
139 | 150
152
152
155
157 | 145
148
148
152
151 | 148
149
150
153
154 | | MONTH | | | • | | | | | | | 168 | 130 | 145 | | | | m | IEMDED AMIIDE | MAMER / DE | aa a) | MARGO VOA | B OGMODER 1 | 001 mo (| ie nasamores : | .002 | | | | TEMPERATURE, WATE | R (DEG. C | 3), | WATER | YEAR | OCTOBER | 1981 | TO | SEPTEMBER | 198 | 32 | |-------------------|-----------|-----|-------|------|---------|------|----|-----------|-----|----| |-------------------|-----------|-----|-------|------|---------|------|----|-----------|-----|----| | DAY | MAX | MIN | MEAN | |----------------------------------|--|--|----------------------------------|---------------------------------|---------------------------------|---------------------------------|----------------------|----------------|--------------------------|----------------------|----------------|----------------| | | | OCTOBE | CR | | NOVEMBE | R | | DECEMBE | R | | JANUAR | Y | | 1
2
3
4
5 |
10.5
9.5
9.0
8.5
8.5 | 9.0
8.5
8.0
8.0 | 9.5
9.0
8.5
8.5 | 5.0
5.5
5.5
5.5 | 4.5
4.5
5.0
5.0 | 5.0
5.0
5.0
5.5
5.5 | .5
.0
.5
.5 | .0
.0
.0 | .0
.0
.5
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | | 6
7
8
9
10 | 9.0
8.5
8.5
8.5
8.5 | 8.5
8.0
8.0
8.0 | 8.5
8.5
8.5
8.5 | 5.5
5.0
4.5
4.0
3.0 | 5.0
4.5
4.0
3.0
2.5 | 5.0
4.5
4.5
3.5
2.5 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0 | | 11
12
13
14
15 | 8.5
9.0
9.5
10.0 | 8.5
8.5
9.0
9.5
9.5 | 8.5
9.0
9.0
9.5
10.0 | 2.5
2.5
3.0
3.5
3.5 | 2.0
2.0
2.5
3.0
3.0 | 2.0
2.5
2.5
3.0
3.5 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | | 16
17
18
19
20 | 10.0
10.0
9.5
7.5
7.0 | 9.5
9.5
7.5
7.0
6.0 | 9.5
9.5
8.5
7.0
6.5 | 4.0
4.5
4.5
4.0
3.0 | 3.5
4.0
4.0
3.0
1.5 | 4.0
4.5
4.0
3.5
2.5 | .0
.0
.5
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | | 21
22
23
24
25 | 6.0
5.5
4.0
3.0
2.0 | 5.5
4.0
3.0
2.0
1.5 | 5.5
4.5
3.5
2.5
2.0 | 1.5
.5
.5
.5 | •5
•5
•0 | 1.0
•5
•5
•0 | .0
.0
.0 | .0
.0
.0 | • 0
• 0
• 0
• 0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | | 26
27
28
29
30
31 | 1.5
2.0
2.5
3.0
4.5
5.5 | 1.0
1.0
2.0
2.0
3.0
4.5 | 1.5
1.5
2.0
2.5
3.5 | .0
.0
.0 | .0 | .0
.0
.0 | .0
.0
.0
.0 | .0
.0
.0 | .0
.0
.0
.0 | .0
.0
.0
.0 | .0
.0
.0 | .0
.0
.0 | | MONTH | 10.5 | 1.0 | 6.5 | 5.5 | .0 | 2.5 | •5 | •0 | .0 | .0 | •0 | .0 | # 04024000 ST. LOUIS RIVER AT SCANLON, MN--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | DAY | XAM | NIN | MEAN | MAX | MIN | MEAN | ! | MAX | MIN | MEAN | MAX | MIN | MEAN | |--|--|--|--|--|--|--|--|---|--|--|--|--|--| | | | FEBRUAR | Y | | MARCH | | | | APRIL | | | MAY | | | 1
2
3
4
5 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | | | | | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | | | | | 6
7
8
9 | .0 | .0 | .0 | .0 | .0 | .0 | | .0 | .0
.0
.0 | .0
.0
.0 | | | | | 10
11
12
13
14
15 | | | | .0
.0
.0
.0 | .0
.0
.0
.0 | .0 | | .0 | .0 | .0
.0
.0 | | | | | 16
17
18
19
20 | | | | .0
.0
.0 | .0 | .0 | | .5
1.0
.5
1.5
2.5 | .0
.0
.0
.5 | .0
.5
.5
1.0
2.0 | | | | | 21
22
23
24
25 | | | | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | | 3.5
4.5
6.5
8.5
0.0 | 2.0
2.5
4.0
6.5
8.5 | 2.5
3.5
5.0
7.0
9.0 | | | | | 26
27
28
29
30
31 |

 | | | .0
.0
.0
.0 | .0
.0
.0
.0 | .0
.0
.0 | | 0.5 | 9.5 | 10.0 | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN | MEAN | 1 | MAX | MIN
AUGUST | MEAN | MAX | MIN
SEPTEM | MEAN
BER | | | MAX | MIN
JUNE | MEAN | | JULY | | | | AUGUST | | | SEPTEM | BER | | DAY 1 2 3 4 5 | MAX | JUNE | MEAN | MAX
21.0
21.5
21.0
20.5
22.0 | | MEAN 20.5 21.0 21.0 20.5 20.5 | 2
2
1
1 | MAX
1.0
0.0
8.5
8.5
9.5 | | | MAX
17.5
17.5
17.5
18.0
18.0 | | | | 1
2
3
4 | MAX | JUNE

 | | 21.0
21.5
21.0
20.5 | JULY
19.5
20.5
20.5
20.5 | 20.5
21.0
21.0
20.5 | 2
2
1
1
1
1
1
2
2 | 1.0
0.0
8.5
8.5 | AUGUST
20.0
18.0
17.0
15.5 | 20.5
19.0
18.0
17.5 | 17.5
17.5
17.5
18.0 | SEPTEMP
16.5
17.0
16.5
17.0 | 17.0
17.0 | | 1
2
3
4
5
6
7
8
9 | | JUNE | | 21.0
21.5
21.0
20.5
22.0
23.0
22.5
20.5
20.5 | JULY 19.5 20.5 20.5 20.5 20.0 22.0 20.5 20.0 18.5 | 20.5
21.0
21.0
20.5
20.5
21.5
20.5
19.5 | 2
2
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2 | 1.0
0.0
8.5
8.5
9.5
9.0 | AUGUST 20.0 18.0 17.0 15.5 16.5 16.0 16.5 17.0 18.0 | 20.5
19.0
18.0
17.5
18.0
17.0
17.5
18.5
20.0 | 17.5
17.5
17.5
18.0
18.0
17.5
17.5 | SEPTEMI
16.5
17.0
16.5
17.0
17.5
17.0
17.0
17.0
17.0 | 17.0
17.0
17.0
17.5
17.5
17.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | | JUNE | | 21.0
21.5
21.0
20.5
22.0
23.0
22.5
20.5
20.5
18.5
19.5
20.5 | JULY 19.5 20.5 20.5 20.5 20.0 22.0 20.5 20.0 18.5 17.5 18.0 18.5 19.5 | 20.5
21.0
21.0
20.5
20.5
20.5
21.5
20.5
19.5
18.0
18.0
18.0
18.5 | 2
2
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2 |
1.0
0.0
8.5
5.5
9.0
5.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0 | AUGUST 20.0 18.0 17.0 15.5 16.5 16.0 18.0 19.5 19.0 19.5 19.5 | 20.5
19.0
18.0
17.5
18.0
17.5
18.5
20.0
19.5
20.0
20.0 | 17.5
17.5
17.5
18.0
18.0
18.0
17.5
17.5
17.5
19.0
19.0
19.5
19.5
19.0 | SEPTEMI 16.5 17.0 16.5 17.0 17.5 17.0 17.0 17.0 17.0 17.0 17.0 17.0 16.0 | 17.0
17.0
17.0
17.5
17.5
17.5
17.5
17.5
17.5
17.0
17.5
17.5 | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 8 | | JUNE | | 21.0
21.5
21.0
20.5
20.5
22.0
23.0
22.5
20.5
20.5
20.5
20.5
20.5
20.5
20 | JULY 19.5 20.5 20.5 20.0 22.0 22.0 20.5 20.0 18.5 17.5 17.5 18.5 19.5 20.0 19.5 20.5 | 20.5
21.0
21.0
20.5
20.5
20.5
21.5
20.5
19.5
18.0
18.5
19.0
20.0
20.0
21.0
22.0
21.5 | 2
2
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2 | 100.5555 05.500 050055 5500 | AUGUST 20.0 18.0 17.0 15.5 16.5 16.0 18.0 19.5 19.0 19.5 19.0 21.0 21.0 22.0 22.0 | 20.5
19.0
18.0
17.5
18.0
17.5
18.5
20.0
19.5
20.0
20.0
20.0
20.5
21.5
22.5
22.5 | 17.5
17.5
18.0
18.0
17.5
17.5
18.0
19.5
19.0
19.5
19.0
14.0
13.5
13.5 | SEPTEMI 16.5 17.0 16.5 17.0 17.5 17.0 17.0 17.0 17.0 17.5 18.0 19.0 16.0 14.5 13.5 13.5 13.5 13.5 | 17.0
17.0
17.0
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5 | | 1 2 3 4 5 6 7 8 9 10 11 2 13 14 5 16 7 18 19 20 21 22 32 4 25 26 27 28 29 30 | 18.5
18.5
18.5
19.0
19.5
20.0
20.5
21.0 | JUNE 17.0 17.5 18.0 18.0 18.5 19.5 19.5 | 18.0
18.0
18.0
18.5
19.0
20.0
20.0 | 21.0
21.5
21.0
20.5
22.0
23.0
22.5
20.5
20.5
18.5
19.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20 | JULY 19.5 20.5 20.5 20.0 22.0 22.0 20.5 20.0 18.5 17.5 17.5 18.0 18.5 19.5 20.0 21.5 20.5 20.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 | 20.5
21.0
20.5
20.5
20.5
22.5
22.5
20.5
18.0
18.0
20.0
20.0
20.0
21.5
20.5
21.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0 | 2
2
2
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2 | 108889 99010 000000 123322 211111 098877 | AUGUST 20.0 18.0 17.0 16.5 16.5 16.0 18.0 19.5 19.0 19.5 19.0 21.5 22.0 21.5 22.0 21.0 22.0 21.7 20.0 | 20.5
19.0
18.0
17.5
18.0
17.5
18.5
20.0
20.0
20.0
20.0
20.5
21.5
22.5
22.5
22.5
22.5
21.0
20.5
21.5
21.0
20.5 | 17.5
17.5
18.0
18.0
18.0
19.5
118.0
19.5
118.0
19.5
118.0
19.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119.5
119 | SEPTEMI 16.5 17.0 16.5 17.0 17.5 17.0 17.0 17.0 17.5 18.0 16.0 14.5 13.5 13.5 13.0 12.5 12.0 12.0 12.0 12.0 12.0 12.0 12.5 | 17.0
17.0
17.5
17.5
17.5
17.5
17.5
17.5
17.5
18.5
17.0
17.0
17.5
18.5
17.0
13.5
13.5
13.5
13.0
12.5
13.0
12.5
13.0 | | 1 2 3 4 5 6 7 8 9 10 11 2 13 4 15 16 17 8 19 20 21 22 32 4 25 26 27 | 18.5
18.5
18.5
19.0
19.5
20.0
20.5 | JUNE 17.0 17.5 17.5 18.0 18.0 18.0 18.5 19.5 | 18.0
18.0
18.0
18.0
18.5
19.0
20.0 | 21.0
21.5
21.0
20.5
22.0
23.0
22.5
20.5
18.5
19.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20 | JULY 19.5 20.5 20.5 20.0 22.0 20.5 20.0 18.5 17.5 18.0 18.5 19.5 20.0 21.5 20.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 | 20.5
21.0
20.5
20.5
20.5
22.5
21.5
20.5
18.0
18.5
19.0
20.0
20.0
21.0
22.0
22.0
22.0
22.0
22 | 2 2 2 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 | 108889 99010 000000 123332 211111 09887 | AUGUST 20.0 18.0 17.0 15.5 16.5 16.0 16.5 17.0 19.0 19.5 20.0 21.5 22.0 22.0 21.5 21.0 20.5 20.0 19.0 18.0 17.5 | 20.5 19.0 18.0 17.5 18.0 17.5 18.5 20.0 20.0 20.0 20.5 21.5 22.5 22.0 21.5 21.0 20.5 21.5 21.0 21.5 21.0 21.5 21.0 21.5 |
17.5
17.5
18.0
18.0
18.0
19.5
19.0
19.5
19.0
19.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113.5
113. | SEPTEMI 16.5 17.0 16.5 17.0 17.5 17.0 17.0 17.0 17.5 18.0 19.0 14.5 13.5 13.5 13.0 13.0 12.5 12.0 12.0 12.0 12.0 12.0 | 17.0
17.0
17.5
17.5
17.5
17.5
17.5
17.5
17.5
18.5
17.0
18.5
17.0
18.5
17.0
18.5
17.0
18.5
17.0
18.5
17.0
18.5
17.0
18.5
17.0
18.5
17.0
18.5
17.0
18.5
17.0
18.5
17.0
18.5
17.0
18.5
17.0
18.5
17.0
18.5
17.0
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5 | #### 04024098 DEER CREEK NEAR HOLYOKE, MN LOCATION.--Lat 46°31'30", long 92°23'20", in NE4SE4 sec.29, T.47 N., R.16 W., Carlton County, Hydrologic Unit 04010301, on left bank 179 ft (54.6 m) west of State Highway No. 23, 0.9 mi (1.4 km) upstream from mouth and 4.0 mi (6.4 km) north of Holyoke. DRAINAGE AREA .-- 7.77 mi² (20.1 km²). PERIOD OF RECORD. -- October 1976 to current year. GAGE.--Water-stage recorder. Datum of gage is 736.14 ft (239.615 m) National Geodetic Vertical Datum of 1929. REMARKS .-- Records good except those for winter periods, which are fair. AVERAGE DISCHARGE.--6 years, 6.07 ft^3/s (0.172 m^3/s), 10.61 in/yr (269 mm/yr). EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 383 ft 3 /s (10.8 m 3 /s) May 10, 1979, gage height, 17.11 ft (5.215 m), from rating curve extended above 104 ft 3 /s (2.95 m 3 /s); minimum discharge, 0.20 ft 3 /s (0.006 m 3 /s) Aug. 13, 16, 1982. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 204 ft 3 /s (5.78 m 3 /s) July 7, gage height, 15.45 ft (4.709 m) from rating curve extended above 142 ft 3 /s (4.02 m 3 /s); maximum gage height, 16.07 ft (4.898 m) Mar. 31; minimum discharge, 0.20 ft 3 /s (0.006 m 3 /s) Aug. 13, 16; minimum gage height, 11.31 ft (3.447 m) Dec. 5, 9. | | | DISCHAR | GE, IN CU | BIC FEET | PER SECON | D, WATER
MEAN VALU | YEAR OCTO | OBER 1981 | TO SEPTE | MBER 1982 | | | |--|--|--|--|--|-----------------------------------|---|---|--|---|--|-----------------------------------|------------------------------------| | DAY | OCT | VOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 12
5.6
3.3
42
13 | 4.7
4.5
4.5
4.4
4.3 | 2.1
2.1
2.1
2.0
2.0 | 2.0
2.0
2.0
2.0 | 1.6
1.6
1.6
1.6 | 2.9
3.0
3.0
3.0
3.1 | 80
33
33
24
14 | 4.5
5.5
25
50
93 | 3.1
3.9
2.4
3.3
2.3 | .51
.50
1.6
.93
.63 | .76
.67
1.1
.81
.76 | 1.3
.90
.58
.57
7.3 | | 6
7
8
9
10 | 9.6
4.6
2.3
1.6
9.2 | 4.1
3.9
3.9
3.3
3.5 | 2.0
1.9
1.9
1.7 | 1.9
1.9
1.8
1.8 | 1.6
1.6
1.6
1.6 | 3.1
3.2
3.3
3.4
3.5 | 11
7.6
9.0
12 | 33
19
12
8.7
13 | 2.4
2.2
1.8
2.9
4.7 | 15
83
13
7.8
23 | •57
•60
•55
•56
•46 | 2.8
1.1
.89
.85
5.7 | | 11
12
13
14
15 | 5.7
3.2
13
62
21 | 3.5
3.6
3.6
3.7 | 2.0
2.1
2.1
2.2
2.2 | 1.8
1.8
1.7
1.7 | 1.6
1.7
1.7
1.8
1.9 | 3.5
3.7
10
3.6
3.3 | 15
51
76
87
100 | 14
11
52
35
30 | 2.7
1.8
1.5
1.2 | 21
7.6
4.3
3.9
3.9 | .40
.42
.39
.52
.62 | 4.3
13
23
6.1
21 | | 16
17
18
19
20 | 12
58
40
17
13 | 3.9
3.7
3.6
2.7
2.5 | 2.3
2.3
2.3
2.3
2.3 | 1.7
1.7
1.7
1.7 | 2.1
2.3
2.4
2.5
2.6 | 3.1
3.0
3.0
3.0
3.0 | 103
66
38
34
22 | 46
51
83
36
22 | .97
 .90
 .75
 .69
 .92 | 9.4
5.5
2.8
1.4
1.4 | .47
.47
.83
9.5 | 14
10
6.8
3.6
2.2 | | 21
22
23
24
25 | 10
8.4
7.3
6.7
6.7 | 2.2
2.2
2.0
2.1
2.1 | 2.3
2.3
2.2
2.2
2.2 | 1.7
1.7
1.7
1.7 | 2.7
2.7
2.8
2.8
2.8 | 3.1
3.3
5.0
4.1
3.3 | 16
15
14
13 | 15
12
9.8
8.4
7.6 | .90
.87
.75
.73 | 1.3
1.4
.90
1.0 | .60
.66
.58
.61 | 1.6
1.2
1.1
1.1 | | 26
27
28
29
30
31 | 6.3
6.5
6.1
5.9
5.8 | 2.1
2.1
2.1
2.1
2.1 | 2.2
2.2
2.1
2.1
2.1
2.1 | 1.7
1.7
1.7
1.7
1.6
1.6 | 2.9
2.9
2.9
 | 3.2
3.1
3.8
10
53 | 8.6
7.1
6.1
5.3
4.7 | 6.6
5.8
4.9
4.3
4.0
3.3 | .61
.60
.60
1.5
.63 | .79
.66
.52
1.6
1.8 | .44
.48
.50
.50
.45 | 1.0
.94
1.0
1.3
4.9 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 423.1
13.6
62
1.6
1.75
2.03 | 96.6
3.22
4.7
2.0
.41
.46 | 65.8
2.12
2.3
1.7
.27 | 55.0
1.77
2.0
1.6
.23
.26 | 59.1
2.11
2.9
1.6
.27 | 262.6
8.47
100
2.9
1.09
1.26 | 926.4
30.9
103
4.7
3.98
4.43 | 725.4
23.4
93
3.3
3.01
3.47 | 49.47
1.65
4.7
.60
.21 | 219.13
7.07
83
.50
.91
1.05 | 27.45
.89
9.5
.39
.12 | 141.23
4.71
23
.57
.61 | CAL YR 1981 TOTAL 2654.30 MEAN 7.27 MAX 151 MIN 1.1 CFSM .94 IN 12.71 WTR YR 1982 TOTAL 3051.28 MEAN 8.36 MAX 103 MIN .39 CFSM 1.08 IN 14.61 ## 05045950 ORWELL LAKE NEAR FERGUS FALLS, MN LOCATION.--Lat 46°12'55", long 96°10'40", in SWł sec.26, T.132 N., R.44 W., Otter Tail County, Hydrologic Unit 09020103, at dam on Otter Tail River at outlet of Orwell Lake, 7 mi (11 km) southwest of Fergus Falls. DRAINAGE AREA.--1,830 mi² (4,740 km²), approximately. PERIOD OF RECORD .-- March 1953 to current year. Prior to October 1971, published as Orwell Reservoir. GAGE .-- Water-stage recorder. Datum of gage is adjustment of 1912. REMARKS.--Reservoir is formed by earth dam with concrete spillway with one taintor gate; storage began in March 1953. Capacity to elevation 1,070 ft (326 m) (maximum operating stage) is 14,100 acre-ft (17.4 hm³) of which 13,100 acre-ft (16.2 hm³) is controlled storage above elevation 1,048 ft (319 m) (minimum operating stage). Dead storage, 210 acre-ft (0.259 hm³). Figures given herein represent total contents. Reservoir is used for flood control and to increase low flow for water supply and pollution abatement. COOPERATION. -- Records furnished by Corps of Engineers. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 16,920 acre-ft (20.9 hm³) June 17, 1962, May 23, 1966, elevation, 1,072.38 ft (326.861 m); minimum (after initial filling), 844 acre-ft (1.04 hm³) Aug.
26, 27, 1953, elevation, 1,046.96 ft (319.113 m). EXTREMES FOR CURRENT YEAR.--Maximum contents, 14,280 acre-ft (17.6 hm³) Sept. 30, elevation, 1,070.16 ft (326.185 m); minimum, 1,930 acre-ft (2.38 hm³) Mar 12, elevation, 1,051.61 ft (320.531 m). #### MONTHEND ELEVATION AND CONTENTS, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | | Date | Elevation
(feet) | Contents
(acre-feet) | Change in contents
(acre-feet) | |--|---|---|---|--| | Sept.
Oct.
Nov.
Dec. | 30 | 1068.64
1068.13
1064.78
1061.46 | 12640
12130
9220
6720 | -510
-2910
-2500 | | CAL | YR 1981 | | | - 511 | | Jan. Feb. Mar. Apr. May June July Aug. Sept. | 31.
28.
31.
30.
31.
30.
31.
31.
31.
31.
31.
31.
31.
31 | 1055.37
1054.36
1055.60
1056.28
1055.51
1054.28
1057.71
1065.53
1070.16 | 3370
2940
3470
3780
3430
2910
4460
9820
14280 | -3350
-430
+530
+310
-350
-520
+1550
+5360
+4460 | | WTR | YR 1982 | | | +1640 | # 05046000 OTTER TAIL RIVER BELOW ORWELL DAM, NEAR FERGUS FALLS, MN LOCATION.--Lat 46°12'35", long 96°11'05", in NE% sec.34, T.132 N., R.44 W., Otter Tail County, Hydrologic Unit 09020103, on left bank 0.7 mi (1.1 km) downstream from Orwell Dam, 6.1 mi (9.8 km) downstream from Dayton Hollow Dam, 8 mi (13 km) southwest of Fergus Falls, and 11.1 mi (17.9 km) downstream from Pelican River. DRAINAGE AREA.--1,830 mi² (4,740 km²), approximately. PERIOD OF RECORD. --October 1930 to current year. Prior to October 1952, published as Otter Tail River below Pelican River, near Fergus Falls. Monthly discharge only for some periods, published in WSP 1308. REVISED RECORDS.--WSP 785: 1934(M). WSP 1208: 1947(M). WSP 1308: 1931(M). GAGE.--Water-stage recorder. Datum of gage is 1,029.65 ft (313.837 m), adjustment of 1912 (levels by Corps of Engineers). Oct. 11, 1930, to Nov. 17, 1933, at same site at datum 2.00 ft (0.61 m) higher; Nov. 18, 1933, to Mar. 21, 1953, at site 6.1 mi (9.8 km) upstream at datum 40.30 ft (12.283 m) higher. REMARKS.--Records good. Flow regulated by Orwell Lake (station 05045950) beginning Mar. 21, 1953 and powerplants upstream. AVERAGE DISCHARGE.--52 years, 303 ft^3/s (8.581 m^3/s), 219,500 acre-ft/yr (271 hm^3/yr). EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,710 ft³/s (48.4 m³/s) June 17, 1953, gage height, 5.60 ft (1.707 m) backwater from aquatic vegetation; minimum, 0.70 ft³/s (0.020 m³/s) Aug. 5, 1970, gage height, 1.28 ft (0.390 m), result of regulation. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 849 ft 3 /s (24.0 m 3 /s) part of each day May 29-31, gage height, 3.71 ft (1.131 m) result of regulation; maximum gage height, 3.97 ft(1.210 m) Jan. 10 (backwater from ice); minimum, 23 ft 3 /s(0.65 m 3 /s) Apr. 2, gage height, 1.77 ft (0.539 m) result of regulation. DIGGUARDE IN QUELO DED DED CROONE MARER VEAR COMORED 1001 MG GERMENDER 1000 | | | DISCHARGE | , IN C | JBIC FEET | PER SECON | D, WATER
MEAN VALU | YEAR OCTO
ES | BER 1981 | TO SEPTE | MBER 1982 | | | |--------------------------------------|--|---------------------------------|--|--|------------------------------------|--|------------------------------------|--|-------------------------------------|--|--|------------------------------------| | DAY | OCT | NOA | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 55 | 194 | 235 | 233 | 205 | 329 | 396 | 582 | 841 | 627 | 399 | 235 | | 2 | 54 | 193 | 248 | 231 | 205 | 345 | 163 | 581 | 835 | 622 | 355 | 240 | | 3 | 55 | 192 | 256 | 231 | 205 | 353 | 63 | 581 | 827 | 614 | 360 | 224 | | 4 | 56 | 191 | 256 | 230 | 205 | 351 | 222 | 585 | 768 | 607 | 393 | 210 | | 5 | 64 | 198 | 256 | 251 | 214 | 351 | 411 | 611 | 740 | 603 | 363 | 210 | | 6 | 69 | 198 | 256 | 270 | 235 | 347 | 514 | 624 | 753 | 573 | 372 | 210 | | 7 | 72 | 196 | 254 | 265 | 235 | 347 | 591 | 677 | 766 | 541 | 396 | 210 | | 8 | 71 | 197 | 251 | 266 | 235 | 342 | 635 | 698 | 815 | 544 | 395 | 210 | | 9 | 92 | 197 | 254 | 270 | 235 | 337 | 692 | 692 | 836 | 521 | 382 | 210 | | 10 | 110 | 201 | 251 | 270 | 235 | 332 | 722 | 692 | 822 | 556 | 377 | 196 | | 11 | 113 | 201 | 251 | 260 | 235 | 328 | 709 | 685 | 812 | 558 | 358 | 182 | | 12 | 114 | 201 | 251 | 255 | 235 | 326 | 699 | 738 | 806 | 556 | 390 | 182 | | 13 | 113 | 217 | 251 | 250 | 235 | 331 | 693 | 762 | 798 | 566 | 176 | 182 | | 14 | 150 | 240 | 251 | 245 | 235 | 336 | 686 | 755 | 772 | 575 | 33 | 178 | | 15 | 182 | 240 | 251 | 245 | 235 | 345 | 683 | 753 | 785 | 570 | 32 | 178 | | 16 | 182 | 240 | 251 | 245 | 240 | 418 | 765 | 747 | 729 | 523 | 33 | 173 | | 17 | 182 | 240 | 251 | 245 | 245 | 479 | 815 | 782 | 696 | 502 | 35 | 141 | | 18 | 182 | 240 | 251 | 240 | 246 | 478 | 800 | 827 | 698 | 502 | 169 | 126 | | 19 | 178 | 240 | 247 | 235 | 258 | 473 | 785 | 836 | 694 | 462 | 322 | 130 | | 20 | 182 | 240 | 245 | 235 | 278 | 471 | 772 | 831 | 679 | 445 | 322 | 130 | | 21 | 182 | 240 | 244 | 230 | 277 | 473 | 750 | 825 | 615 | 451 | 323 | 130 | | 22 | 183 | 240 | 243 | 230 | 283 | 468 | 737 | 827 | 627 | 432 | 320 | 130 | | 23 | 182 | 240 | 243 | 230 | 310 | 465 | 722 | 820 | 620 | 421 | 292 | 129 | | 24 | 187 | 240 | 240 | 230 | 335 | 463 | 705 | 820 | 607 | 424 | 272 | 127 | | 25 | 187 | 235 | 240 | 230 | 332 | 457 | 689 | 825 | 612 | 429 | 272 | 133 | | 26
27
28
29
30
31 | 185
186
188
187
189
191 | 235
235
235
234
231 | 240
240
240
237
235
235 | 230
230
230
210
205
205 | 328
327
326
 | 457
452
456
464
494
538 | 619
570
585
590
587 | 829
836
841
845
846
846 | 606
607
614
599
614 | 409
395
397
400
384
397 | 273
240
230
230
230
235 | 133
147
157
157
158 | | TOTAL
MEAN
MAX
MIN
AC-FT | 4323
139
191
54
8570 | 221
240
191 | 7654
247
256
235
5180 | 7432
240
270
205
14740 | 7169
256
335
205
14220 | 12606
407
538
326
25000 | 18370
612
815
63
36440 | 23199
748
846
581
46020 | 21593
720
841
599
42830 | 15606
503
627
384
30950 | 8579
277
399
32
17020 | 5158
172
240
126
10230 | CAL YR 1981 TOTAL 58186 MEAN 159 MAX 267 MIN 42 AC-FT 115400 WTR YR 1982 TOTAL 138310 MEAN 379 MAX 846 MIN 32 AC-FT 274300 ## 05050000 BOIS DE SIOUX RIVER NEAR WHITE ROCK, SD LOCATION.--Lat 45°51'45", long 96°34'25", in SW&SW& sec.27, T.128 N., R.47 W., Roberts County, Hydrologic Unit 09020101, on Sisseton Indian Reservation, on left bank just downstream from Big Slough Outlet, 300 ft (91 m) downstream from White Rock Dam, 4 mi (6 km) south of White Rock, and 5 mi (8 km) northwest of Wheaton, MN. DRAINAGE AREA.--1,160 mi² (3,004 km²), approximately. PERIOD OF RECORD. -- October 1941 to current year. GAGE.--Water-stage recorder. Datum of gage is 960.00 ft (292.608 m), adjustment of 1912 (levels by Corps of Engineers). Prior to Jan. 14, 1943, nonrecording gage at same site at datum 0.11 ft (0.03 m) lower. Jan. 15, 1943, to Sept. 30, 1963, water-stage recorder at same site at datum 0.11 ft (0.03 m) lower. REMARKS.--Records fair. Flow regulated by Lake Traverse-Boise de Sioux Flood Control and Water Conservation project (available capacity for flood control, 137,000 acre-ft or 169 hm³). AVERAGE DISCHARGE.--41 years, 76.8 ft 3 /s (2.175 m 3 /s), 55,640 acre-ft/yr (68.6 hm 3 /yr); median of yearly mean discharges, 50 ft 3 /s (1.42 m 3 /s), 36,200 acre-ft/yr (45 hm 3 /yr). EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,770 ft³/s (107 m³/s), occurred during period Apr. 19-21, 1969, gage height, 15.07 ft (4.593 m), from floodmark; no flow at times in most years. EXTREMES FOR CURRENT YEAR. -- Maximum discharge, 414 ft3/s (11.7 m3/s) Apr. 16, gage height, 8.25 ft (2.515 m); no flow on many days. | | | DISCHARG | E, IN CU | BIC FEET | PER SECO | ND, WATER
MEAN VALU | YEAR OCTO | BER 1981 | TO SEPTE | MBER 1982 | | | |--------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|------------------------------------|-----------------------------------|------------------------------------|------------------------------------|------------------------------------|---------------------------------|----------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | 55
60
78
59
42 | 140
115
90
74
58 | 74
30
.03
.00 | .29
.29
.38
.38 | .38
.40
.40
.42
.40 | .04
.02
.00
.02 | | 6
7
8
9 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | .00
.00
.00 | .00
.00
.00 | .00
.00
.00
.00 | 28
23
71
209
243 | 55
55
55
52
7 9 | .00
.00
.00 | .45
.85
3.6
4.2
2.1 | .40
.35
.29
.27 | .00
.00
.00 | | 11
12
13
14
15 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | .00
.00
.00 | .00
.00
.00 |
.50
.80
1.5
2.0
2.5 | 205
190
212
283
346 | 116
97
96
95
97 | .00
.00
.00
.28 | 1.6
19
58
47
6.6 | .25
.21
.19
.19 | .00
.03
.00
.04 | | 16
17
18
19
20 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | .00
.00
.00 | .00
.00
.00 | 3.0
3.0
3.0
3.0 | 340
250
249
285
321 | 102
118
159
160
163 | .02
.08
.09
.08 | 16
1.8
.70
.55 | .17
.17
.17
.21 | .00
.10
.03
.09 | | 21
22
23
24
25 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | .00
.00
.00 | .00
.00
.00 | 3.0
3.0
3.5
3.5 | 315
310
308
304
308 | 143
121
121
122
122 | .14
.14
.10
.23 | .50
.29
.48
.45 | .09
.06
.10
.06 | .02
.00
.03
.10 | | 26
27
28
29
30
31 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | 4.0
4.5
4.5
5.0 | 236
174
170
167
173 | 101
73
72
74
79
82 | .21
.21
.29
.38
.35 | .23
.23
.27
.33
.33 | .02
.00
.00
.00 | .00
.00
.00
.00 | | TOTAL
MEAN
MAX
MIN
AC-FT | .00
.000
.00 | .00
.000
.00 | .00
.000
.00 | .00
.000
.00 | .00
.000
.00 | 120.50
3.89
60
.00
239 | 6014
200
346
23
11930 | 3086
99.5
163
52
6120 | 107.10
3.57
74
.00
212 | 168.40
5.43
58
.23
334 | 5.83
.19
.42
.00
12 | .71
.024
.10
.00
1.4 | | CAL YR
WTR YR | | TAL 683.6
TAL 9502.5 | | 1.87
26.0 | MAX 24
MAX 346 | MIN .00 | | 1360
18850 | | | | | #### 05051500 RED RIVER OF THE NORTH AT WAHPETON, ND LOCATION.--Lat 46°15'55", long 96°35'40", in NEt sec.8, T.132 N., R.47 W., Richland County, Hydrologic Unit 09020104, on left bank in Wahpeton, 800 ft (240 m) downstream from confluence of Bois de Sioux and Otter Tail Rivers, and at mile 548.6 (882.7 km). DRAINAGE AREA.--4,010 mi² (10,390 km²), approximately. WTR YR 1982 TOTAL 165765 MEAN 454 #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--April 1942 to current year. Gage-height records collected in this vicinity since 1917 are contained in reports of the U.S. Weather Bureau. GAGE.--Water-stage recorder and concrete and wooden dam. Datum of gage is 942.97 ft (287.417 m) National Geodetic Vertical Datum of 1929. Prior to Aug. 6, 1943, U.S. Weather Bureau nonrecording gage 800 ft (240 m) upstream, converted to present datum. Aug. 6, 1943, to Oct. 27, 1950, nonrecording gage at present site and datum. REMARKS.--Records good except those for winter periods, which are fair. Flow regulated by Orwell Reservoir, capacity, 14,100 acre-ft (17.4 hm³) at elevation 1,070 ft (326.136 m) National Geodetic Vertical Datum of 1929, adjustment of 1912; Lake Traverse, capacity, 137,000 acre-ft (169 hm³), available for flood control; numerous other controlled lakes and ponds, and several powerplants. AVERAGE DISCHARGE.--39 years (1943-82), 523 ft 3 /s (14.82 m 3 /s), 378,900 acre-ft/yr (467 hm 3 /yr); median of yearly mean discharges, 464 ft 3 /s (13.1 m 3 /s), 336,000 acre-ft/yr (414 hm 3 /yr). EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 9,200 ft 3 /s (261 m 3 /s) Apr. 10, 1969, gage height, 16.34 ft (4.980 m); minimum daily, 1.7 ft 3 /s (0.048 m 3 /s) Aug. 28 to Sept. 5, 9, 10, 1976. EXTREMES OUTSIDE PERIOD OF RECORD. -- A stage of 17.0 ft (5.182 m), discharge, 10,500 ft³/s (297 m³/s) occurred in the spring of 1897 and has not been exceeded since. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 3,120 ft 3 /s (88.4 m 3 /s) Apr. 1, gage height, 12.26 ft (3.737 m) backwater from ice; minimum daily, 37 ft 3 /s (1.05 m 3 /s) Aug. 17. | | | DISCHARGE, | IN | CUBIC FEET | PER SECOND, | WATER | YEAR OCTOB | ER 1981 TC | SEPTEMBER | 1982 | | | |--------------------------------------|--|---------------------------------|--|--|---------------------------------|--|---------------------------------------|--|---------------------------------|--|--|------------------------------------| | DAY | OCT | NOA | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 61
60
60
67
80 | 184
183
184
184
181 | 155
133
152
159
152 | 189
132
132
219
299 | 200
198
188
185
190 | 352
350
359
370
365 | 3070
2700
1880
895
796 | 788
780
772
756
708 | 908
905
893
864
818 | 620
636
648
640
628 | 404
419
388
366
387 | 268
258
246
233
213 | | 6
7
8
9
10 | 78
78
77
75
82 | 184
183
181
183
180 | 180
228
240
214
207 | 251
219
229
210
190 | 188
198
200
200
218 | 367
367
376
323
345 | 789
945
1070
967
1000 | 696
708
744
800
820 | 772
759
761
777
826 | 648
647
590
627
614 | 410
448
450
434
420 | 214
207
206
205
205 | | 11
12
13
14
15 | 102
115
111
115
131 | 184
180
177
186
215 | 192
218
220
205
174 | 20 2
222
335
465
358 | 230
242
240
240
235 | 373
366
383
383
410 | 1090
1150
1200
1190
1210 | 820
880
916
936
944 | 823
810
797
783
765 | 596
601
610
619
616 | 408
344
403
315
99 | 196
195
191
182
200 | | 16
17
18
19
20 | 174
197
199
197 | 221
221
220
183
148 | 173
189
215
238
238 | 278
254
254
237
225 | 245
260
290
279
225 | 425
475
535
600
680 | 1210
1220
1180
1120
1090 | 928
940
960
1010
1040 | 758
732
675
666
668 | 634
618
572
557
544 | 49
37
39
68
237 | 191
186
172
137
132 | | 21
22
23
24
25 | 193
189
192
190
191 | 125
180
220
190
170 | 226
220
214
204
200 | 225
232
210
161
184 | 299
312
314
315
340 | 690
675
642
650
660 | 1100
1080
1060
1040
1010 | 1030
1020
997
980
975 | 663
621
609
606
573 | 538
508
486
457
456 | 316
345
341
318
283 | 131
130
125
129
130 | | 26
27
28
29
30
31 | 188
195
269
194
180
180 | 164
141
175
198
162 | 209
208
192
178
190
202 | 206
215
215
214
212
200 | 351
355
355
 | 692
710
760
890
1530
2570 | 996
932
808
784
792 | 963
959
936
927
914
906 | 605
607
622
647
629 | 458
450
421
412
410
403 | 296
293
267
231
232
237 | 126
128
136
154
160 | | TOTAL
MEAN
MAX
MIN
AC-FT | 4411
142
269
60
8750 | 183
221
125 | 6125
198
240
133
2150 | 7174
231
465
132
14230 | 253
355
185 | .8673
602
2570
323
37040 | 35374
1179
3070
784
70160 | 889
1040
696 | 731
908
573 | 7264
557
648
403
4240 | 9284
299
450
37
18410 | 5386
180
268
125
10680 | MAX 3070 MIN 37 AC-FT 328800 # RED RIVER OF THE NORTH BASIN # 05051500 RED RIVER OF THE NORTH AT WAHPETON, ND--Continued # WATER-QUALITY RECORDS PERIOD OF RECORD. -- Water years 1972 to current year. | DATE | TIME | STRE
FLO
INST
TANE
(CI | EAM- COW, COM, COMAN- DEOUS AFS) (U | NCE
MHOS) | PH
(STAND-
ARD
UNITS)
(00400) | AT
A
(DE | PER-
URE,
IR
G C)
020) | TEMF
ATU
(DEG
(000 | PER-
IRE
C) | HAR
NES
(MG
AS
CAC | S
/L
03) | DIS | VED
/L
CA) | DI
SOI
(MC
AS | IS-
LVED
3/L
MG) | | S-
/ED
S/L
NA) | |--------------------|-------------------------------|------------------------------------|--|--|---|----------------------------------|--|-----------------------------|---|--------------------------------|--|--------------------|---|------------------------|---|---------------|-------------------------| | APR
20 | 1630 | : | 1090 | 488 | 8.3 | | 11.5 | | 6.0 | | 230 | 4 | 16 | : | 28 | ر | 11 | | AUG
24 | 1145 | | 321 | 385 | 8.2 | | 22.0 | 2 | 24.0 | | 195 | 3 | 32 | : | 28 | | 6.0 | | DATE APR 20 AUG 24 | A
SOR
TI
RAT
(009 | ON | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | SULFA' DIS- SOLV: (MG/) AS SO: (0094) 71 | DIS
ED SOI
L (MC
4) AS | DE,
S-
LVED
G/L
CL) | FLUC
RIDE
DIS
SOLV
(MG/
AS F
(0095 | ED
L | SILICA
DIS-
SOLVE
(MG/I
AS
SIO2)
(00955 | D | SOLIDS
RESIDU
AT 180
DEG.
DIS-
SOLVE
(MG/I
(70300 | JÉ
C
C
J) | | 7
[
5,
ED | | ED
S | | | DATE | | S-
VED
/L
AS) | BORON,
DIS-
SOLVED
(UG/L
AS B)
(01020) | IRON
DIS
SOLVI
(UG/
AS FI
(0104 | ED SOIL (UCE) AS | AD,
IS-
LVED
G/L
PB) | LITHI
DIS
SOLV
(UG/
AS L | S-
'ED
'L
.I) | MANGA
NESE,
DIS-
SOLVE
(UG/I
AS MM | ED |
MERCUF
DIS-
SOLVE
(UG/I
AS HO | -
ED
H) | MOLYH
DENUM
DIS-
SOLVH
(UG/1
AS MO | (,
ED | SELE
NIUM
DIS
SOLV
(UG/
AS S | ED
L
E) | | | APR
20 | | 1 | 50 | | 10 | 0 | | 16 |] | LO | | . 2 | • | 1 | | 1 | | | AUG
24 | | 2 | 60 | | 30 | 0 | | 12 |] | LO | | .3 | | 2 | | 0 | | | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS)
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS)
(00095) | TEMPER-
ATURE
(DEG C)
(00010) | |-----------|---------|--|--|--| | OCT | | | | | | 08 | 1755 | 76 | 522 | 11.0 | | NOV | | - 1:0 | | | | 20
JAN | 0920 | 148 | 412 | .0 | | 06 | 1620 | 251 | 490 | •0 | | FEB | 1020 | 4,74 | .,, | • • | | 18 | 1450 | 282 | 675 | .0 | | MAR | 1 1 1 5 | 25.60 | 266 | | | 31
APR | 1445 | 2560 | 366 | .0 | | 06 | 1730 | 827 | 418 | •5 | | 20 | 1630 | 1090 | 488 | •5
6.0 | | MAY | | | | -0 - | | 19
JUL | 1620 | 1040 | 499 | 18.0 | | 07 | 0950 | 650 | 378 | 22.0 | | AUG | 0770 | 0,0 | 310 | 22.0 | | 24 | 1145 | 321 | 385 | 24.0 | | | | | | | # 05051522 RED RIVER OF THE NORTH AT HICKSON, ND LOCATION.--Lat 46°39'35", long 96°47'44", in SWt sec.19, T.137 N., R.48 W., Clay County, MN, Hydrologic Unit 09020104, on right bank 60 ft (18 m) downstream from bridge on township road 1 mi (2 km) southeast of Hickson, ND. DRAINAGE AREA.--4,300 mi² (11,100 km²), approximately. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD .-- October 1975 to current year. GAGE.--Water-stage recorder and concrete control. Datum of gage is 877.06 ft (267.3 m) National Geodetic Vertical Datum of 1929. REMARKS.--Records good except those for winter periods, which are fair. Flow regulated by Orwell Reservoir, capacity, 14,100 acre-ft (17.4 hm²) at elevation 1,070 ft (326.136 m) National Geodetic Vertical Datum of 1929, adjustment of 1912; Lake Traverse, capacity, 137,000 acre-ft (169 hm³), available for flood control; numerous other controlled lakes and ponds, and several powerplants. AVERAGE DISCHARGE.--7 years, 491 ft^3/s (13.91 m^3/s), 355,700 acre-ft/yr (439 hm^3/yr). EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 9,600 ft³/s (272 m³/s) Apr. 18, 1979, gage height, 33.03 ft (10.068 m); no flow Oct. 26, 1976 to Jan. 9, 1977. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 4,200 ft 3 /s (119 m 3 /s) Apr. 4, gage height, 23.07 ft (7.032 m) backwater from ice; minimum daily, 51 ft 3 /s (1.44 m 3 /s) Aug. 20. | | | DISCHARG | E, IN CU | BIC FEET | PER SECOND, | WATER | YEAR OCTO | BER 1981 | TO SEPTEM | MBER 1982 | | | |--------------------------------------|----------------------------------|-----------------------------------|--|--|-----------------------|---|--|--|-------------------------------------|--|--|------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | YAM | JUN | JUL | AUG | SEP | | 1 | 58 | 197 | 244 | 210 | 220 | 355 | 3300 | 820 | 976 | 706 | 449 | 277 | | 2 | 61 | 190 | 204 | 230 | 216 | 345 | 3650 | 828 | 975 | 690 | 443 | 284 | | 3 | 63 | 191 | 168 | 202 | 212 | 346 | 4000 | 834 | 972 | 694 | 446 | 296 | | 4 | 70 | 192 | 132 | 205 | 210 | 354 | 4150 | 828 | 963 | 696 | 441 | 299 | | 5 | 74 | 192 | 99 | 220 | 210 | 360 | 3700 | 815 | 949 | 695 | 408 | 286 | | 6 | 77 | 192 | 102 | 230 | 215 | 394 | 2900 | 786 | 922 | 685 | 406 | 269 | | 7 | 76 | 188 | 152 | 237 | 212 | 401 | 2000 | 761 | 878 | 677 | 448 | 253 | | 8 | 78 | 184 | 195 | 221 | 200 | 410 | 1440 | 759 | 849 | 695 | 449 | 256 | | 9 | 72 | 184 | 230 | 215 | 225 | 411 | 1420 | 772 | 839 | 688 | 460 | 250 | | 10 | 73 | 180 | 242 | 243 | 230 | 408 | 1580 | 822 | 848 | 666 | 453 | 252 | | 11 | 77 | 184 | 230 | 236 | 248 | 366 | 1690 | 839 | 869 | 668 | 445 | 245 | | 12 | 80 | 188 | 215 | 196 | 235 | 370 | 1760 | 844 | 884 | 644 | 436 | 246 | | 13 | 100 | 192 | 215 | 170 | 232 | 388 | 1360 | 880 | 882 | 639 | 407 | 247 | | 14 | 122 | 192 | 215 | 178 | 250 | 395 | 1210 | 930 | 869 | 643 | 385 | 237 | | 15 | 122 | 188 | 215 | 244 | 268 | 427 | 1240 | 965 | 857 | 649 | 415 | 236 | | 16 | 122 | 192 | 200 | 312 | 260 | 476 | 1240 | 981 | 844 | 643 | 297 | 234 | | 17 | 137 | 200 | 150 | 366 | 264 | 542 | 1220 | 989 | 824 | 647 | 154 | 236 | | 18 | 188 | 204 | 158 | 352 | 264 | 590 | 1220 | 991 | 817 | 647 | 83 | 234 | | 19 | 216 | 214 | 190 | 300 | 260 | 649 | 1200 | 1010 | 781 | 616 | 59 | 222 | | 20 | 224 | 214 | 210 | 280 | 262 | 726 | 1150 | 1040 | 750 | 588 | 51 | 205 | | 21 | 228 | 129 | 235 | 266 | 264 | 742 | 1110 | 1070 | 746 | 587 | 95 | 169 | | 22 | 228 | 96 | 234 | 256 | 266 | 758 | 1100 | 1090 | 742 | 575 | 280 | 157 | | 23 | 228 | 118 | 234 | 240 | 271 | 774 | 1100 | 1080 | 729 | 547 | 348 | 155 | | 24 | 224 | 227 | 240 | 216 | 285 | 779 | 1090 | 1060 | 711 | 528 | 372 | 152 | | 25 | 224 | 310 | 232 | 196 | 292 | 782 | 1050 | 1050 | 709 | 511 | 372 | 148 | | 26
27
28
29
30
31 | 224
224
228
259
219 | 286
230
220
196
204 | 230
226
215
210
200
192 | 164
176
200
224
228
216 | 301
328
351
 | 775
786
800
1070
2180
2900 | 1030
1010
978
888
833 | 1040
1030
1020
1020
996
979 | 673
673
705
728
716 | 493
489
485
466
449
443 | 355
328
332
334
306
279 | 153
156
153
155
168 | | TOTAL
MEAN
MAX
MIN
AC-FT | 4600
148
259
58
9120 | 5874
196
310
96
11650 | 6214
200
244
99
12330 | 7229
233
366
164
14340 | 252
351
200 | 21059
679
2900
345
41770 | 51619
1721
4150
833
102400 | 28929
933
1090
759
57380 | 24680
823
976
673
48950 | 18849
608
706
443
37390 | 10550
340
460
51
20900 | 6630
221
299
148
13150 | WTR YR 1982 TOTAL 193270 MEAN 530 MAX 4150 MIN 51 AC-FT 383400 # 05051522 RED RIVER OF THE NORTH AT HICKSON, ND--Continued # WATER-QUALITY RECORDS PERIOD OF RECORD.--Water years 1976 to current year. | | | | • | | | | | | • | | | |------------------|--|---|--|---|---|---|--|---|---|---|--| | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS)
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS)
(00095) | PH
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE,
AIR
(DEG C)
(00020) | TEMPER-
ATURE
(DEG C)
(00010) | COLOR
(PLAT-
INUM-
COBALT
UNITS)
(00080) | TUR-
BID-
ITY
(NTU)
(00076) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301) | HARD-
NESS
(MG/L
AS
CACO3)
(00900) | | JAN
07
JUN | 1135 | 237 | 510 | 7.9 | -20.5 | .0 | 5 | 3.0 | 12.6 | 89 | 257 | | 01 | 1510 | 972 | 468 | 8.4 | 19.0 | 17.5 | 15 | 56 | 8.4 | 91 | 219 | | JUL
08 | 1100 | 695 | 398 | 8.1 | 29.0 | 24.0 | 30 | 120 | 6.5 | 80 | 195 | | DATE | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
AD-
SORP-
TION
RATIO
(00931) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | | JAN
07
JUN | 47 | 34 | 12 | •3 | 4.2 | 11 | 8.8 | .2 | 15 | 300 | 282 | | 01
JUL | 40 | 29 | 10 | •3 | 5.1 | 27 | 7.4 | •1 | 11 | 277 | 246 | | 08 | 37 | 25 | 8.6 | •3 | 3.8 | 14 | 5.5 | .1 | 14 | 224 | 223 | | DATE | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY)
(70302) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
(00630) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N)
(00610) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N)
(00605) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | NITRO-
GEN,
TOTAL
(MG/L
AS N)
(00600) | PHOS-
PHORUS,
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS,
DIS-
SOLVED
(MG/L
AS P)
(00666) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | CARBON,
ORGANIC
SUS-
PENDED
TOTAL
(MG/L
AS C)
(00689) | | JAN
07 | 102 | .17 | 10 | •450 | 65 | 1 10 | 1 2 | .070 | .070 | 8.6 | •3 | | JUN | 192 | | .10 | | .65 | 1.10 | 1.3 | | | | | | JUL
JUL | 727 | <.10 | <.10 | .190 | 2.0 | 2.20 | | .210 | .050 | 8.5 | 1.2 | | 08 | 420 | .19 | .18 | .230 | 1.4 | 1.60 | 1.8 | .170 | .060 | 7.5
 1.0 | | | | | | | | | | | | | | | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS)
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS)
(00095) | TEMPER-
ATURE
(DEG C)
(00010) | |-----------|------|--|--|--| | OCT | | | | | | 08 | 1315 | 78 | 506 | 10.5 | | NOV
19 | 1135 | 216 | 502 | 3.0 | | JAN | 1137 | 210 | J02 | 3.0 | | 07 | 1135 | 237 | 510 | .0 | | FEB
18 | 1005 | 272 | 495 | •5 | | APR
06 | 1220 | 2900 | 380 | •0 | | JUN | 1220 | 2900 | 300 | •0 | | 01 | 1510 | 972 | 468 | 17.5 | | JUL
08 | 1100 | 695 | 398 | 24.0 | | AUG
24 | 1725 | 381 | 425 | 24.0 | | | | | | | # 05054000 RED RIVER OF THE NORTH AT FARGO, ND LOCATION.--Lat 46°51'40", long 96°47'00", in NW\left sec.18, T.139 N., R.48 W., Cass County, Hydrologic Unit 09020104, at city waterplant on 4th St. S. in Fargo, 25 mi (40 km) upstream from mouth of Sheyenne River, and at mile 453.0 (728.9 km). DRAINAGE AREA.--6,800 mi² (17,600 km²), approximately. # WATER-DISCHARGE RECORDS PERIOD OF RECORD.--May 1901 to current year. Published as "at Moorhead, Minn." 1901. Monthly discharge only for some periods, published in WSP 1308. REVISED RECORDS.--WSP 1308: 1902-4, 1906-7, 1910-14, 1916, 1918, 1924. WSP 1388: 1905-6, 1917-20(M), 1935(M), 1938-39(M), 1943. GAGE.--Water-stage recorder and concrete control. Datum of gage is 861.8 ft (262.68 m) National Geodetic Vertical Datum of 1929. Oct. 1, 1960, to Sept. 30, 1962, water-stage recorder at present site at datum 5.6 ft (1.71 m) higher. See WSP 1728 or 1913 for history of changes prior to Oct. 1, 1960. REMARKS.--Records good except those for winter periods, which are fair. Flow regulated by Orwell Reservoir, capacity, 14,100 acre-ft (17.4 hm³) at elevation 1,070 ft (326.136 m) National Geodetic Vertical Datum of 1929, adjustment of 1912; Lake Traverse, capacity, 137,000 acre-ft (169 hm³), available for flood control; other controlled lakes and ponds and several powerplants. Some small diversions for municipal supply. Figures of daily discharge do not include diversions to cities of Fargo and Moorhead and from Sheyenne River. AVERAGE DISCHARGE (UNADJUSTED).--81 years, 554 ft 3 /s (15.69 m 3 /s), 401,400 acre-ft/yr (495 hm 3 /yr); median of yearly mean discharges, 443 ft 3 /s (12.5 m 3 /s), 321,000 acre-ft/yr (396 hm 3 /yr). EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 25,300 ft^3/s (716 m^3/s) Apr. 15, 1969, gage height, 37.34 ft (11.381 m); no flow for many days in each year for period 1932-41, Sept. 30, Oct. 1, 2, 1970, Oct. 10-19, 1976. EXTREMES OUTSIDE PERIOD OF RECORD, -- Flood of Apr. 7, 1897 reached a stage of 39.1 ft (11.92 m) present datum, discharge, 25,000 ft³/s (708 m³/s) at site 1.5 mi (2.4 km) downstream. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 5,920 ft³/s (168 m³/s) Apr. 4, gage height, 25.07 ft (7.641 m) backwater from ice; minimum daily, 45 ft³/s (1.27 m³/s) Aug. 21. | | | DISCHARGE, | IN CU | BIC FEET | PER SECOND | , WATER | YEAR OCTO | BER 1981 | TO SEPTE | MBER 1982 | | | |---|---|---|---|--|---------------------------------|--|--|--|---|---|---|--| | DAY | OCT | NoV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 60
55
46
63
71 | 218
186
177
177 | 200
193
169
153
118 | 198
222
224
205
203 | 200
192
192
198
200 | 340
350
355
370
370 | 4900
5500
5700
5800
5600 | 862
854
854
846
830 | 935
935
934
932
933 | 674
671
668
668
675 | 419
408
401
401
383 | 239
237
254
266
248 | | 6
7
8
9
10 | 68
63
63
63 | 177
172
164
168
168 | 101
102
140
190
223 | 222
229
225
245
255 | 200
192
210
194
240 | 380
400
455
450
440 | 4950
3800
2880
2120
1820 | 798
750
726
742
798 | 945
891
837
834
828 | 648
641
688
737
673 | 361
403
422
428
427 | 240
222
213
209
210 | | 11
12
13
14
15 | 65
114
97
68
88 | 168
172
168
168
177 | 225
204
189
199
209 | 258
250
232
232
250 | 220
244
238
244
252 | 425
380
405
430
450 | 1780
1880
1820
1860
1830 | 822
830
838
910
959 | 838
887
899
893 | 667
649
631
635
644 | 417
410
402
359
366 | 208
222
210
202
211 | | 16
17
18
19
20 | 111
190
177
164
177 | 171
182
206
210
215 | 208
199
168
160
193 | 210
325
285
220
185 | 260
260
265
260
270 | 480
515
575
580
700 | 1770
1700
1640
1580
1490 | 977
1020
986
995
1020 | 874
849
837
812
769 | 655
748
776
785
697 | 352
229
126
74
46 | 200
196
197
189
181 | | 21
22
23
24
25 | 190
190
190
186
186 | 187
121
99
136
250 | 213
228
227
220
230 | 155
270
260
250
245 | 265
260
240
270
285 | 760
740
740
740
730 | 1400
1330
1300
1260
1230 | 1060
1100
1080
1060
1050 | 733
724
719
709
682 | 649
624
592
547
526 | 45
106
250
335
350 | 164
144
132
131
135 | | 26
27
28
29
30
31 | 195
192
198
198
233
243 | 305
240
215
205
177 | 221
207
202
200
206
202 | 210
170
165
190
195
200 | 295
300
325
 | 740
730
800
1140
2500
4000 | 1180
1120
1080
1000
902 | 1030
1010
1000
1000
981
952 | 658
628
649
697
689 | 492
470
467
454
429
412 | 341
310
302
304
284
270 | 127
120
136
129
124 | | TOTAL MEAN MAX MIN AC-FT † MEAN ‡ AC-FT ‡ | 4067
131
243
46
8070
1067
148
9140 | 185
305
99
11020 1
1035
202
12060 1 | 5899
190
230
101
1700
1015
206
2720
ERVED | 6985
225
325
155
13850
1113
243
14960 | 242
325
192 | 22470
725
4000
340
44570
1260
746
45830 | 72222
2407
5800
902
143300
1105
2426
144400 | 28740
927
1100
726
57010
1207
947
58220 | 24437
815
945
628
48470
1350
838
49820 | 19292
622
785
412
38270
1567
648
39840 | 9731
314
428
45
19300
1733
342
21030
ADJUSTED | 5696
190
266
120
11300
1335
212
12640 | | | | | | | | | | | | | | | AC-FT 142100 AC-FT 420200 MEAN 217 AC-FT 157110 MEAN 601 AC-FT 435120 MEAN 196 MEAN 580 MAX 1710 MAX 5800 MIM 27 CAL YR 1981 TOTAL 71651 WTR YR 1982 TOTAL 211866 [†] Diversions in acre-feet to cities of Fargo and Moorhead. ‡ Adjusted for diversions to cities of Fargo and Moorhead. # 05054000 RED RIVER OF THE NORTH AT FARGO, ND--Continued # WATER-QUALITY RECORDS PERIOD OF RECORD.--Water years 1956 to current year. | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS)
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS)
(00095) | PH
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE,
AIR
(DEG C)
(00020) | TEMPER-
ATURE
(DEG C)
(00010) | HARD-
NESS
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | |-------------|--|--|--|--|---|---|---|---|--| | APR
09 | 1150 | 2120 | 400 | 8.3 | 6.5 | .0 | 175 | 42 | 17 | | AUG
25 | 1215 | 368 | 415 | 8.2 | 24.5 | 23.0 | 204 | 34 | 29 | | DATE APR 09 | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
AD-
SORP-
TION
RATIO
(00931) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-RIDE,
DIS-SOLVED (MG/LAS CL) (00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | | AUG | | _ | | | | | _ | _ | | | 25 | 9.5 | •3 | 4.3 | 21 | 6.5 | • 2 | 16 | 275 | 246 | | DATE | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY)
(70302) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS)
(01000) | BORON,
DIS-
SOLVED
(UG/L
AS B)
(01020) | IRON,
DIS-
SOLVED
(UG/L
AS
FE)
(01046) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | LITHIUM
DIS-
SOLVED
(UG/L
AS LI)
(01130) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | MERCURY
DIS-
SOLVED
(UG/L
AS HG)
(71890) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | | APR
09 | 1350 | 2 | 20 | 80 | 0 | 17 | 50 | .6 | 0 | | AUG
25 | 273 | 4 | 70 | 40 | 0 | 12 | 0 | •3 | 0 | | | | | | | | | | | | | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS)
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS)
(00095) | TEMPER-
ATURE
(DEG C)
(00010) | |-----------|------|--|--|--| | OCT | | | | | | 07 | 1250 | 64 | 558 | 16.0 | | NOA | | | | | | 18 | 1335 | 200 | 509 | 4.0 | | JAN
08 | 1155 | 226 | 530 | .0 | | FEB | | | 231 | | | 17 | 1525 | 259 | 538 | •5 | | MAR | | | | _ | | 31
APR | 1000 | 4100 | 255 | .0 | | 09 | 1150 | 2120 | 400 | .0 | | MAY | | | | | | 27 | 1140 | 1020 | 521 | 19.5 | | JUL
06 | 1355 | 655 | 407 | 25.5 | | AUG | 1377 | 0)) | ,0, | 27.7 | | 25 | 1215 | 368 | 415 | 23.0 | | | | | | | # 05054020 RED RIVER OF THE NORTH BELOW FARGO, ND # WATER-QUALITY RECORDS LOCATION.--Lat 46°55'50", long 96°47'05", in SWANEA sec. 19, T.140 N., R.48 W., Cass County, Hydrologic Unit 09020104, at bridge on county highway 2 mi (3.2 km) north of North Dakota State University campus in Fargo, and 12 mi (19 km) above mouth of Sheyenne River. DRAINAGE AREA.--6,820 mi² (17,660 km²), approximately. PERIOD OF RECORD. -- Water years 1969 to current year. WATER QUALITY DATA WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | | | WA | TER QUALI | TY DATA, | WATER YE | AR OCTOBER | 1981 TO | SEPTEMBER | 1982 | | | |------------------|---|--|--|--|--|---|---|--|--|--|---| | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS)
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS)
(00095) | PH
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE,
AIR
(DEG C)
(00020) | TEMPER-
ATURE
(DEG C)
(00010) | COLOR
(PLAT-
INUM-
COBALT
UNITS)
(00080) | HARD-
NESS
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | | NOV
18 | 1430 | 200 | 572 | 8.5 | 3.0 | 4.0 | 10 | 265 | 50 | 34 | 18 | | JAN
07 | 1530 | E240 | 535 | 8.1 | -16.0 | .0 | 10 | 261 | 47 | 35 | 16 | | FEB
17 | 1525 | 259 | 538 | 7.6 | 3.0 | •5 | 5 | 261 | 47 | 35 | 14 | | MAY
27 | 1300 | 1080 | 530 | 8.5 | 24.0 | 19.5 | | 254 | 49 | 32 | 16 | | JUL
06 | 1130 | 655 | 408 | 8.3 | 21.0 | 24.0 | 40 | 193 | 36 | 25 | 9.0 | | AUG
25 | 0800 | 368 | 640 | 8.5 | 15.5 | 22.0 | 30 | 259 | 41 | 38 | 27 | | DATE | SODIUM
AD-
SORP-
TION
RATIO | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY)
(70302) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | PHOS-
PHORUS,
DIS-
SOLVED
(MG/L
AS P)
(00666) | | NOV
18 | •5 | 5.6 | 66 | 11 | •2 | 2.2 | 315 | 313 | 170 | .16 | .020 | | JAN
07 | • 4 | 5.2 | 24 | 11 | .2 | 14 | 317 | 302 | | .21 | .100 | | FEB
17
MAY | . 4 | 6.0 | 23 | 17 | •3 | 20 | 314 | 312 | 220 | .34 | •050 | | 27
JUL | . 4 | 5.7 | 88 | 9.5 | .1 | 9.4 | 345 | 328 | 1010 | <.10 | •050 | | 06
AUG | •3 | 4.2 | 20 | 6.5 | .1 | 13 | 237 | 230 | 419 | .24 | .060 | | 25 | •7 | 20 | 33 | 47 | .2 | 17 | 433 | 367 | 430 | •51 | .150 | | | DATE
MAY | TIME | ARSENIC
DIS-
SOLVED
(UG/L
AS AS)
(01000) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR)
(01030) | COBALT,
DIS-
SOLVED
(UG/L
AS CO)
(01035) | COPPER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | | | | 27
AUG | 1300 | 3 | 69 | <3 | <10 | <1 | 2 | 9 | <1 | | | | 25 | 0800 | 5 | 100 | <1 | <10 | <5 | ' 5 | 16 | 15 | | | | MA | D
SO
(U
ATE AS
(O1 | HIUM NE
IS- D
LVED SO
G/L (U
LI) AS
130) (01 | IS- | RCURY DE
DIS- D
DLVED SC
JG/L (U
S HG) AS
.890) (01 | NUM, NI
DIS- DO
DLVED SO
G/L (UG
S MO) AS
060) (01 | UM, DI
IS- D
LVED SO
G/L (U
SE) AS
145) (01 | DIS- DI
LVED SOI
G/L (UG
V) AS
085) (016 | LVED TO
3/L (M
ZN) AS
090) (00 | NIDE
TAL
G/L
CN)
720) | | | | A U | 7
g
5 | 32
17 | 4 | <.1 | 2 | <1 | 5.7 | | <.01
<.01 | | | | 2 | J • • • | 17 | 2 | <.1 | 11 | <1 | 5.1 | O | å 01 | | ## 05061000 BUFFALO RIVER NEAR HAWLEY, MN LOCATION.--Lat 46°51'00", long 96°19'45", in NW\sE\ sec.14, T.139 N., R.45 W., Clay County, Hydrologic Unit 09020106, near left downstream end of bridge on farm lane, 2 mi (3 km) southwest of Hawley. DRAINAGE AREA. -- 322 m12 (834 km2). PERIOD OF RECORD.--March 1945 to September 1980, annual maximum discharge WY 1981, March 1982 to August 1982. REVISED RECORDS.--WSP 1308: 1945-46(M), 1948(M). GAGE.--Water-stage recorder. Datum of gage is 1,111.91 ft (338.910 m) National Geodetic Vertical Datum of 1929. Prior to Jan. 29, 1953, nonrecording gage at bridge 1,800 ft (549 m) upstream at datum 3.17 ft (0.97 m) lower. REMARKS. -- Records good except those for winter period, which are fair. AVERAGE DISCHARGE.--35 years (water years 1945-80), 72.7 ft³/s (2.059 m³/s), 52,670 acre-ft/yr (64.9 hm³/yr). EXTREMES FOR PERIOD OF RECORD, --Maximum discharge, 2,050 ft 3 /s (58.1 m 3 /s) July 1, 1975, gage height, 9.76 ft (2.975 m); minimum, 2.8 ft 3 /s (0.079 m 3 /s) Aug. 26, 1977; minimum gage height, 2.55 ft (0.777 m) Sept. 5, 1961. EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum stage known, about 11.3 ft (3.44 m), present datum, spring of 1921, from information by local resident. EXTREMES FOR CURRENT PERIOD:--March to August 1982: Maximum discharge during period, $468 \text{ ft}^3/\text{s}$ (13.3 m³/s) Apr. 2, gage height, 7.22 ft (2.201 m) (backwater from ice); minimum daily discharge, 10 ft³/s (0.28 m³/s) Mar. 1; minimum gage height, 3.25 ft (0.991 m) July 7, 8. DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 MEAN VALUES | | | | | | (V | TEAN VALU | ES | | | | | | |--------------------------------------|-----|-----|-----|-----|--------------------|-------------------------------------|-----------------------------------|-----------------------------------|----------------------------------|-----------------------------------|---------------------------------|----------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | | | | | | 10
16
16
12
12 | 360
455
410
216
181 | 92
90
82
73
76 | 61
59
56
51
53 | 27
26
26
24
23 | 35
33
31
29
28 | 20
21
20
18
17 | | 6
7
8
9
10 | | | | |

 | 12
14
14
22
20 | 241
274
250
226
233 | 76
71
66
68
67 | 52
50
49
50
51 | 22
22
21
81
242 | 27
29
29
27
25 | 15
14
13
12
12 | | 11
12
13
14
15 | | | | | | 20
25
40
65
100 | 234
228
252
317
361 | 65
63
62
62
75 | 53
51
49
47
44 | 254
154
108
78
66 | 24
22
21
20
19 | 11
12
14
16
16 | | 16
17
18
19
20 | | | | | | 125
140
150
150
135 | 355
324
297
268
241 | 81
88
100
115
119 | 41
38
36
34
33 | 57
53
46
47
75 | 18
19
20
20
20 | 16
17
18
27
29 | | 21
22
23
24
25 | | | | | 21
15 | 120
140
140
91
60 | 211
187
165
149
137 | 114
111
101
89
78 | 31
29
29
29 | 125
142
142
115
77 | 19
18
17
18
17 | 23
19
17
14
13 | | 26
27
28
29
30
31 | | | | | 18
15
12
 | 45
45
60
120
215
285 | 125
110
100
93
90 | 69
65
63
60
58
59 | 30
29
28
28
28 | 67
58
50
43
40
38 | 16
17
18
21
21 | 13
13
 | | TOTAL
MEAN
MAX
MIN
AC-FT | | | | | | 2419
78.0
285
10
4800 | 7090
236
455
90
14060 | 2458
79•3
119
58
4880 | 1250
41.7
61
28
2480 | 2349
75•8
254
21
4660 | 699
22•5
35
16
1390 | | #### 05061500 SOUTH BRANCH BUFFALO RIVER AT SABIN, MN
LOCATION.--Lat 46°46'20", long 96°37'40", in SW\SW\sec.9, T.138 N., R.47 W., Clay County, Hydrologic Unit 09020106, near center of span on downstream side of highway bridge, 0.3 mi (0.5 km) downstream from Stony Creek and 1 mi (1.6 km) east of Sabin. DRAINAGE AREA.--522 mi² (1,351 km²). PERIOD OF RECORD. -- March 1945 to September 1980, annual maximum discharge WY 1981, March 1982 to August 1982. REVISED RECORDS. -- WSP 1308: 1949(M). GAGE.--Nonrecording gage and crest-stage gage. Datum of gage is 902.39 ft (275.05 m) National Geodetic Vertical Datum of 1929 (levels by Soil Conservation Service). Prior to Aug. 17, 1948, nonrecording gage at site 1 mi (1.6 km) downstream at different datum. REMARKS .-- Records fair except those for winter period, which are poor. AVERAGE DISCHARGE.--35 years (water years 1945-80), 56.0 ft 3 /s (1.586 m 3 /s), 40, $^{\dot{b}}$ 70 acre-ft/yr (50.0 hm 3 /yr); median of yearly mean discharges, 41.4 ft 3 /s (1.172 m 3 /s), 29,990 acre-ft/yr (37.0 hm 3 /yr). EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 8,500 ft 3 /s (241 m 3 /s) July 2, 1975, gage height, 19.90 ft (6.066 m); no flow for many days in most years. EXTREMES FOR CURRENT PERIOD.—March to August 1982: Maximum discharge during period, 1,350 ft 3 /s (38.2 m 3 /s) Apr. 1, gage height, 13.12 ft (3.999 m) from highwater mark; no flow Mar. 1-10. DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 MEAN VALUES | | | | | | | MEAN VALO | 50 | | | | | | |--------------------------------------|-----|-----|-----|-----|-----|---|------------------------------------|----------------------------------|-----------------------------------|--|--|-----| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MA Y | JUN | m JUL | AUG | SEP | | 1
2
3
4
5 | | | | | | .00
.00
.00
.00 | 1320
950
650
541
446 | 40
39
38
34
30 | 15
13
12
12
11 | 1.1
2.8
7.9
16 | 1.8
1.9
2.2
1.6
.88 | | | 6
7
8
9
10 | | | | | | .00
.00
.00 | 368
311
277
224
177 | 28
29
28
28
29 | 11
11
9.6
9.8
9.6 | 17
14
13
14
11 | •34
1•9
2•2
2•5
2•4 | | | 11
12
13
14
15 | | | | | | 2.0
2.5
3.0
7.0 | 152
136
133
144
160 | 30
33
38
39
56 | 8.1
6.5
6.7
7.0
5.2 | 8.2
5.4
7.7
7.4
7.6 | 2.5
1.9
1.3
1.6
1.8 | | | 16
17
18
19
20 | | | | | | 10
10
32
385
465 | 174
168
151
138
119 | 67
70
76
90
96 | 4.2
3.7
3.1
2.8
2.6 | 5.4
5.7
6.4
7.0 | 1.9
2.0
1.9
1.8
2.4 | | | 21
22
23
24
25 | | | | | | 465
455
408
410
355 | 111
96
88
78
72 | 90
79
66
55
47 | 2.5
2.1
2.0
2.0
1.6 | 10
9.1
6.7
5.7
5.2 | 3.0
3.0
3.0
5.9
6.7 | | | 26
27
28
29
30
31 | | | | | | 305
285
290
430
870
1340 | 65
58
54
47
42 | 39
32
29
26
22
18 | 1.1
1.0
1.5
1.1 | 4.6
3.5
2.5
2.1
1.8
1.6 | 3.6
2.4
3.6
3.2
2.7
2.5 | | | TOTAL
MEAN
MAX
MIN
AC-FT | | | | | | 6545.50
211
1340
.00
12980 | 7450
248
1320
42
14780 | 1421
45.8
96
18
2820 | 179.9
6.00
15
1.0
357 | 239.4
7.72
19
1.1
475 | 76.+2
2.47
6.7
.34
152 | | ### 05062000 BUFFALO RIVER NEAR DILWORTH, MN LOCATION.--Lat 46°57'40", long 96°39'40", in SW\sE\ sec.6, T.140 N., R.47 W., Clay County, Hydrologic Unit 09020106, on left bank 4.5 mi (7.2 km) southeast of Kragnes, 6.5 mi (10.5 km) northeast of Dilworth, and 9 mi (14 km) downstream from South Branch. DRAINAGE AREA.--1,040 mi² (2,690 km²), approximately. PERIOD OF RECORD. -- March 1931 to current year. Monthly discharge only for some periods, published in WSP 1308. REVISED RECORDS .-- WSP 1308: 1931(M). GAGE.--Water-stage recorder. Datum of gage is 878.31 ft (267.709 m) National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers). Prior to Apr. 5, 1937, nonrecording gage at same site and datum. REMARKS .-- Records good except those for winter period, which are fair. AVERAGE DISCHARGE.--51 years, 128 ft 3 /s (3.625 m 3 /s), 92,740 acre-ft/yr (114 hm 3 /yr). EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 13,600 ft 3 /s (385 m 3 /s) July 2, 1975, gage height, 27.10 ft (8.260 m); no flow at times in 1936. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,210 ft 3 /s (62.6 m 3 /s) Apr. 2, gage height, 17.80 ft (5.425 m); minimum, 6.9 ft 3 /s (0.20 m 3 /s) Sept 12, gage height, 2.20 ft (0.671 m). | | | DISCHARGE | , IN C | UBIC FEET | | D, WATER
MEAN VALU | YEAR OCTOB | ER 1981 | TO SEPTEM | BER 1982 | | | |--------------------------------------|-----------------------------------|----------------------------|----------------------------------|----------------------------------|--------------------------------|---|--------------------------------------|--|----------------------------------|-----------------------------------|----------------------------------|------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 17
17
19
24
33 | 91
89
86
83
79 | 72
65
61
59
55 | 16
16
15
15 | 12
12
12
12
12 | 22
24
24
24
24 | 1820
2160
2020
1820
1560 | 163
159
156
150
139 | 96
94
89
82
76 | 26
26
26
24
23 | 50
46
43
39
35 | 22
22
19
20
19 | | 6
7
8
9
10 | 39
45
55
68
84 | 77
75
71
71
71 | 53
50
43
38
36 | 15
14
14
14
14 | 12
12
12
12
12 | 22
20
22
22
24 | 1240
1020
736
654
586 | 136
134
128
122
125 | 76
77
74
72
73 | 22
25
27
39
83 | 33
32
32
37
33 | 16
14
13
12
11 | | 11
12
13
14
15 | 86
88
89
86
87 | 69
70
70
68
67 | 35
34
33
32
28 | 14
13
13
13 | 12
12
12
12
12 | 24
25
26
28
32 | 531
509
477
476
515 | 125
122
121
125
138 | 70
67
65
61
57 | 192
193
151
118
94 | 29
27
25
24
22 | 9.1
8.1
11
12
16 | | 16
17
18
19
20 | 89
96
104
106
108 | 68
71
72
72
67 | 28
27
26
25
23 | 13
13
13
13 | 12
13
14
15
16 | 42
65
165
190
220 | 557
564
541
499
452 | 163
170
191
205
217 | 52
48
44
41
39 | 81
73
71
68
66 | 21
22
27
23
25 | 19
19
20
18
27 | | 21
22
23
24
25 | 120
123
118
111
104 | 66
67
69
72
74 | 22
21
20
20
19 | 13
13
12
12
12 | 16
17
18
18
20 | 335
450
500
505
480 | 405
366
330
300
272 | 224
217
206
187
168 | 37
33
31
30
31 | 77
116
127
126
118 | 23
21
21
20
18 | 42
31
22
18
18 | | 26
27
28
29
30
31 | 97
92
88
86
89
92 | 71
65
64
66
69 | 19
18
18
17
17 | 12
12
12
12
12
12 | 20
22
22
 | 460
430
425
545
940
1260 | 247
224
203
181
171 | 151
135
121
114
106
101 | 30
30
30
30
29 | 96
82
72
63
57
53 | 16
16
15
17
21
24 | 16
14
14
13
15 | | TOTAL
MEAN
MAX
MIN
AC-FT | 2460
79.4
123
17
4880 | | 1030
33.2
72
16
2040 | 413
13.3
16
12
819 | 403
14.4
22
12
799 | 7375
238
1260
20
14630 | 21436
715
2160
171
42520 | 4719
152
224
101
9360 | 1664
55•5
96
29
3300 | 2415
77•9
193
22
4790 | 837
27.0
50
15
1660 | 530.2
17.7
42
8.1
1050 | CAL YR 1981 TOTAL 21828.0 MEAN 59.8 MAX 977 MIN 11 AC-FT 43300 WTR YR 1982 TOTAL 45452.2 MEAN 125 MAX 2160 MIN 8.1 AC-FT 90150 ### 05062500 WILD RICE RIVER AT TWIN VALLEY, MN LOCATION.--Lat 47°16'00", long 96°14'40", in NWiNEi sec.27, T.144 N., R.44 W., Norman County, Hydrologic Unit 09020108, on left bank 100 ft (30 m) upstream from highway bridge, 0.8 mi (1.3 km) northeast of village of Twin Valley, and 2 mi (3 km) upstream from small tributary. DRAINAGE AREA. -- 888 m12 (2,300 km2). PERIOD OF RECORD. -- June 1909 to September 1917, July 1930 to current year. Monthly discharge only for some periods, published in WSP 1308. REVISED RECORDS. -- WSP 955: 1941. WSP 1308: 1915(M), 1917(M). GAGE.--Water-stage recorder. Datum of gage is 1,008.16 ft (307.287 m) National Geodetic Vertical Datum of 1929 (Corps of Engineers bench mark). June 1909 to September 1917, nonrecording gage at site 0.2 mi (0.3 km) downstream at different datum. July 23, 1930, to Nov. 24, 1934, nonrecording gage at highway bridge 100 ft (30 m) downstream from present site at present datum. Nov. 25, 1934, to Aug. 2, 1950, water-stage recorder 80 ft (24 m) upstream from present site at present datum. REMARKS.--Records good except those for winter period, which are fair. Flow slightly regulated by Rice Lake and many other small lakes above station. AVERAGE DISCHARGE.--60 years, 173 ft 3 /s (4.899 m 3 /s), 125,300 acre-ft/yr (154 hm 3 /yr); median of yearly mean discharges, 154 ft 3 /s (4.36 m 3 /s), 125,000 acre-ft/yr (154 hm 3 /yr). EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 9,200 ft 3 /s (261 m 3 /s) July 22, 1909, gage height, 20.0 ft (6.10 m), site and datum then in use, from rating curve extended above 3,300 ft 3 /s (93.5 m 3 /s);
minimum, 0.5 ft 3 /s (0.014 m 3 /s) Nov. 4, 1939. EXTREMES FOR CURRENT YEAR.—Maximum discharge, 1,200 ft 3 /s (34.0 m 3 /s) Apr. 19, gage height, 6.51 ft (1.984 m); maximum gage height, 9.01 ft (2.746 m) Mar. 30 (backwater from ice); minimum daily discharge, 11 ft 3 /s (0.31 m 3 /s) Aug. 30, Sept. 2, 3, 7-10; minimum gage height, 1.07 ft (0.326 m) Sept. 3. | DISCHARGE, IN COBIC FEET PER SECOND, WAT | ER YEAR OUTUBER 1901 TO SEPTEMBER 1902 | |--|--| | MEAN VA | LUES | | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | J.UN | JUL | AUG | SEP | |----------------------------------|--|---------------------------------|----------------------------------|----------------------------------|----------------------------|---|--------------------------------------|---|---------------------------------|----------------------------|----------------------------------|----------------------------| | 1 | 61 | 248 | 148 | 58 | 50 | 50 | 1050 | 685 | 408 | 89 | 45 | 12 | | 2 | 59 | 242 | 135 | 57 | 50 | 50 | 1000 | 677 | 381 | 84 | 43 | 11 | | 3 | 80 | 234 | 132 | 57 | 50 | 50 | 1000 | 615 | 356 | 81 | 41 | 11 | | 4 | 107 | 222 | 122 | 57 | 50 | 50 | 900 | 576 | 326 | 78 | 39 | 12 | | 5 | 128 | 213 | 92 | 57 | 50 | 50 | 800 | 542 | 303 | 76 | 37 | 12 | | 6
7
8
9 | 173
204
219
215
208 | 216
222
216
203
197 | 67
101
113
105
100 | 57
57
57
56
56 | 50
50
50
50
50 | 51
51
51
52
52 | 600
500
540
560
550 | 524
508
488
464
445 | 281
262
250
254
239 | 72
71
73
77
66 | 35
35
32
31
29 | 12
11
11
11
11 | | 11 | 20 2 | 184 | 95 | 55 | 50 | 52 | 520 | 445 | 223 | 68 | 27 | 12 | | 12 | 20 7 | 179 | 90 | 55 | 50 | 53 | 652 | 443 | 216 | 62 | 26 | 15 | | 13 | 20 7 | 173 | 87 | 54 | 50 | 53 | 735 | 428 | 204 | 58 | 25 | 16 | | 14 | 20 6 | 175 | 84 | 54 | 50 | 53 | 816 | 408 | 193 | 53 | 25 | 16 | | 15 | 20 9 | 175 | 80 | 53 | 50 | 53 | 895 | 400 | 187 | 49 | 24 | 17 | | 16
17
18
19
20 | 209
253
278
332
339 | 180
182
192
187
175 | 77
75
73
71
70 | 53
53
53
53
53 | 50
50
50
50
50 | 74
110
190
230
240 | 1020
1140
1190
1200
1180 | 453
550
728
804
7 99 | 189
178
160
141
134 | 46
43
44
65
66 | 23
25
24
22
19 | 18
18
17
17 | | 21 | 321 | 145 | 68 | 52 | 50 | 220 | 1150 | 809 | 125 | 64 | 18 | 17 | | 22 | 312 | 122 | 66 | 52 | 50 | 180 | 1120 | 790 | 119 | 62 | 17 | 17 | | 23 | 293 | 144 | 65 | 52 | 50 | 160 | 1080 | 727 | 115 | 59 | 18 | 16 | | 24 | 281 | 181 | 64 | 52 | 50 | 160 | 1030 | 687 | 116 | 57 | 16 | 16 | | 25 | 273 | 184 | 62 | 52 | 50 | 170 | 969 | 658 | 110 | 55 | 14 | 16 | | 26
27
28
29
30
31 | 263
255
276
267
261
254 | 165
150
140
144
146 | 61
60
59
59
58
58 | 51
51
51
51
51
51 | 50
50
50
 | 180
200
260
400
700
1110 | 909
853
802
758
745 | 624
584
545
509
475
443 | 117
116
104
97
95 | 52
46
44
42
44 | 14
13
12
12
11
12 | 16
16
16
17
17 | | TOTAL | 6952 | 5536 | 2597 | 1671 | 1400 | 5355 | 26264 | 17833 | 5999 | 1890 | 764 | 441 | | MEAN | 224 | 185 | 83.8 | 53.9 | 50.0 | 173 | 875 | 575 | 200 | 61.0 | 24.6 | 14.7 | | MAX | 339 | 248 | 148 | 58 | 50 | 1110 | 1200 | 809 | 408 | 89 | 45 | 18 | | MIN | 59 | 122 | 58 | 51 | 50 | 50 | 500 | 400 | 95 | 42 | 11 | 11 | | AC-FT | 13790 | 10980 | 5150 | 3310 | 2780 | 10620 | 52090 | 35370 | 11900 | 3750 | 1520 | 875 | CAL YR 1981 TOTAL 38809 MEAN 106 MAX 339 MIN 15 AC-FT 76980 WTR YR 1982 TOTAL 76702 MEAN 210 MAX 1200 MIN 11 AC-FT 152100 ### 05064000 WILD RICE RIVER AT HENDRUM, MN LOCATION.--Lat 47°16'05", long 96°47'50", in SE\SE\ sec.19, T.144 N., R.48 W., Norman County, Hydrologic Unit 09020108, near center of span on downstream side of highway bridge, 0.5 mi (0.8 km) east of Hendrum and 4 mi (6.4 km) upstream from mouth. DRAINAGE AREA.--1,600 mi² (4,140 km²), approximately. PERIOD OF RECORD .-- March 1944 to current year. REVISED RECORDS .-- WSP 1728: 1958. GAGE.--Nonrecording gage and crest-stage gage. Datum of gage is 836.75 ft (255.041 m) National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers). REMARKS.--Records fair. Large part of high flow diverted into Marsh River basin at overflow section 3.5 mi (5.6 km) east of Ada. Another diversion into the Marsh River basin formed in 1947, 1.5 mi (2.4 km) southeast of Ada and diverted water at all stages 1947-51, after which it was closed except for a small regulated flow diverted for abatement of pollution from Ada sewage plant effluent. Amount of diversion not known. AVERAGE DISCHARGE.--38 years, 258 ft 3 /s (7.307 m 3 /s), 186,900 acre-ft/yr (230 hm 3 /yr); median of yearly mean discharges, 210 ft 3 /s (5.95 m 3 /s), 152,000 acre-ft/yr (187 hm 3 /yr). EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 9,350 ft³/s (265 m³/s) Apr. 10, 1978, gage height, 31.42 ft (9.577 m); maximum gage height, 32.30 ft (9.845 m) Apr. 21, 1979, backwater from Red River of the North; no flow some days in 1948-49. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 3,280 ft³/s (92.9 m³/s) Apr. 3, gage height, 22.51 ft (6.861 m), backwater from Red River of the North; minimum daily, 13 ft³/s (0.37 m³/s) Sept. 7,8; minimum gage height, 1.64 ft (0.500 m) Sept. 7. DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 MEAN VALUES SEP DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG 65 65 684 289 165 3250 618 13 14 115 65 277 87 55 Ŕ 65 Q '6o 65 15 95 35 183 9ŏ 931 885 75 23 599 545 28 312 60 877 75 ---16 ---1637 3250 TOTAL MEAN 288 98.4 612 220 113 19.1 62.4 219 39.0 60.0 MAX MIN AC-FT CAL YR 1981 TOTAL 48750.4 MEAN 134 MAX 1480 MIN 8.0 AC-FT 96700 WTR YR 1982 TOTAL 108696.0 MEAN 298 MAX 3250 MIN 13 AC-FT 215600 ### 05064500 RED RIVER OF THE NORTH AT HALSTAD, MN LOCATION.--Lat 47°21'10", long 96°50'50", on line between secs.24 and 25, T.145 N., R.49 W., Traill County, Hydrologic Unit 09020107, on left bank on upstream side of highway bridge, 0.5 mi (0.8 km) west of Halstad, 2.5 mi (4.0 km) downstream from Wild Rice River, and at mile 375.2 (603.7 km). DRAINAGE AREA.--21,800 m12 (56,500 km2), approximately, including 3,800 m12 (9,840 km2) in closed basins. ### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--April 1936 to June 1937 (no winter records), April 1942 to September 1960 (spring and summer months only), May 1961 to current year. REVISED RECORDS.--WSP 1388: 1936, 1950. WSP 1728: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 826.65 ft (251.963 m) National Geodetic Vertical Datum of 1929. Prior to July 17, 1961, nonrecording gage at same site and datum. REMARKS .-- Records good. Some regulation by many controlled lakes and reservoirs on tributaries. AVERAGE DISCHARGE.--21 years (1961-82), 1,750 ft 3 /s (49.6 m 3 /s), 1,270,000 acre-ft/yr (1.56 km 3 /yr); median of yearly mean discharges, 1,540 ft 3 /s (43.6 m 3 /s), 1,120,000 acre-ft/yr (1.4 km 3 /yr). EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 42,000 ft³/s (1,190 m³/s) Apr. 22, 1979, gage height, 39.00 ft (11.887 m); minimum observed, 5.4 ft³/s (0.15 m³/s) Oct. 8, 9, 12-14, 1936. EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood in 1897 reached a stage of about 38.5 ft (11.73 m). EXTREMES FOR CURRENT YEAR.—Maximum discharge, 13,200 ft 3 /s (374 m 3 /s) Apr. 9, gage height, 27.13 ft (8.269 m) backwater from ice; minimum daily, 168 ft 3 /s (4.76 m 3 /s) Oct. 1. | | | DISCHARGE | , IN C | UBIC FEET | PER SECONI |), WATER | YEAR OCTO | BER 1981 | TO SEPTE | MBER 1982 | | | |--------------------------------------|--|-----------------------------------|--|--|------------------------------------|--|---|--|---------------------------------------|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 168 | 780 | 950 | 350 | 310 | 455 | 8500 | 2710 | 1990 | 1040 | 718 | 345 | | 2 | 173 | 740 | 740 | 340 | 310 | 460 | 10800 | 2480 | 1900 | 1000 | 695 | 336 | | 3 | 193 | 703 | 575 | 330 | 310 | 465 | 12400 | 2340 | 1810 | 958 | 679 | 320 | | 4 | 223 | 680 | 550 | 320 | 310 | 470 | 12700 | 2400 | 1760 | 938 | 668 | 303 | | 5 | 236 | 630 | 545 | 320 | 310 | 475 | 13000 | 2510 | 1700 | 913 | 668 | 295 | | 6 | 303 | 600 | 540 | 320 | 307 | 475 | 13100 | 2480 | 1660 | 881 | 674 | 301 | | 7 | 402 | 620 | 536 | 300 | 307 | 475 | 13100 | 2380 | 1620 | 886 | 658 | 292 | | 8 | 472 | 710 | 530 | 300 | 307 | 480 | 13100 | 2200 | 1620 | 906 | 636 | 285 | | 9 | 505 | 820 | 520 | 300 | 307 | 480 | 13100 | 2020 | 1590 | 989 | 630 | 274 | | 10 | 539 | 910 | 515 | 300 | 305 | 480 | 13000 | 1900 | 1540 | 1110 | 626 | 261 | | 11 | 569 | 930 | 510 | 300 | 305 | 490 | 12900 | 1960 | 1490 | 1140 | 617 | 255 | | 12 | 588 | 918 | 505 | 300 | 305 | 500 | 12400 | 1940 | 1430 | 1060 | 609 | 260 | | 13 | 611 | 854 | 495 | 300 | 305 | 500 | 12000 | 1900 | 1380 | 1110 | 598 | 261 | | 14 | 633 | 820 | 490 | 300 | 305 | 485 | 11500 | 1840 | 1340 | 1120 | 587 | 2 69 | | 15 | 681 | 850 | 485 | 300 | 310 | 485 | 10900 | 1860 | 1300 | 1050 | 577 | 289 | | 16 | 633 | 862 | 475 | 300 | 360 | 510 | 10200 | 2050 | 1260 | 988 | 542 | 28 2 | | 17 | 675 | 850 | 465 | 300 | 370 | 590 | 10000 | 2390 | 1240 | 939 | 529 | 28 6 | | 18 | 739 | 820 |
475 | 300 | 380 | 680 | 9500 | 2670 | 1220 | 909 | 527 | 29 2 | | 19 | 858 | 769 | 451 | 305 | 390 | 830 | 8700 | 2810 | 1180 | 992 | 465 | 29 7 | | 20 | 910 | 713 | 415 | 310 | 400 | 1000 | 8000 | 2930 | 1170 | 1260 | 3 7 0 | 28 9 | | 21 | 930 | 630 | 390 | 315 | 405 | 1300 | 7420 | 2880 | 1140 | 1490 | 305 | 281 | | 22 | 930 | 580 | 380 | 320 | 420 | 1450 | 6830 | 2800 | 1140 | 1440 | 268 | 272 | | 23 | 950 | 565 | 380 | 320 | 430 | 1500 | 6330 | 2730 | 1130 | 1370 | 220 | 274 | | 24 | 890 | 570 | 390 | 310 | 440 | 1600 | 5840 | 2600 | 1090 | 1320 | 206 | 304 | | 25 | 760 | 600 | 390 | 310 | 440 | 1750 | 5280 | 2450 | 1090 | 1250 | 278 | 286 | | 26
27
28
29
30
31 | 680
710
780
787
798
815 | 620
700
798
1010
1030 | 390
390
390
380
370
360 | 310
310
310
310
310
310 | 440
440
450
 | 1800
1900
2000
2400
3600
6300 | 4610
4010
3550
3230
2960 | 2320
2200
2100
2060
2040
2040 | 1090
1050
1030
1999
1010 | 1140
1050
930
833
783
746 | 389
432
415
387
364
357 | 257
246
250
242
241 | | TOTAL
MEAN
MAX
MIN
AC-FT | 19141
617
950
168
37970 | 756
1030
565 | 14977
483
950
360
29710 | 9630
311
350
300
19100 | 9978
356
450
305
19790 | 36385
1174
6300
455
72170 | 278960
9299
13100
2960
553300 | 71990
2322
2930
1840
142800 | 40969
1366
1990
999
81260 | 32541
1050
1490
746
64550 | 15694
506
718
206
31130 | 8445
282
345
241
167 5 0 | | CAL YR
WTR YR | | | MEAN
MEAN | | MAX 3800
MAX 13100 | MIN 12
MIN 16 | | | | | | | # 05064500 RED RIVER OF THE NORTH AT HALSTAD, MN--Continued (National stream-quality accounting network station) (Radiochemical station) ### WATER-QUALITY RECORDS PERIOD OF RECORD. -- Water years 1961-67, 1972 to current year. REMARKS.--Letter K indicates non-ideal colony count and letter E indicates estimated value. | | | WALLIN | ondere on | , | · ILMII OO | 100011 170 | 1 10 00111 | | • | | |------------------|---|---|--|---|--|--|--|--|---|---| | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS)
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS)
(00095) | PH
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE,
AIR
(DEG C)
(00020) | TEMPER-
ATURE
(DEG C)
(00010) | ITY
(NTU) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | | DEC
18 | 1540 | 475 | 735 | 8.1 | -18.0 | .0 | 7.3 | 12.4 | 86 | K17 | | MAR
22 | 1230 | E1450 | 550 | 7.9 | 3.0 | .0 | 24 | 10.1 | 71 | 97 | | APR
30
JUL | 1200 | 3000 | 538 | 8.4 | 17.0 | 12.5 | 32 | 9.8 | 94 | <10 | | 28
SEP | 1220 | 966 | 560 | 8.0 | 24.5 | 25.0 | 120 | 5.9 | 73 | к65 | | 10 | 1345 | 262 | 515 | 8.7 | 29.5 | 23.0 | 11 | 11.9 | 146 | K100 | | DATE | STREP-
TOCOCCI
FECAL,
KF AGAR
(COLS.
PER
100 ML)
(31673) | HARD-
NESS
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
AD-
SORP-
TION
RATIO | SIUM,
DIS-
SOLVED
(MG/L
AS K) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | | DEC
18 | K24 | 338 | 71 | 39 | 29 | •7 | 6.1 | 91 | 31 | •3 | | MAR
22 | <4 | 205 | 44 | 23 | 27 | .8 | 8.0 | 46 | 25 | •2 | | APR
30 | 390 | 235 | 53 | 25 | - 20 | .6 | 6.9 | 87 | 11 | •2 | | JUL
28 | 720 | 231 | 48 | 27 | 28 | .8 | 6.6 | 75 | 13 | .2 | | SEP
10 | 290 | 241 | 47 | 30 | 20 | .6 | 6.9 | 48 | 11 | .2 | | DATE | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY)
(70302) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) | PHOS-
PHORUS,
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS,
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-PHORUS,
ORTHO,
DIS-SOLVED
(MG/L
AS P)
(00671) | | DEC
18 | 13 | 455 | 437 | 584 | .24 | .190 | 1.20 | .110 | .050 | .090 | | MAR
22 | 14 | 347 | 309 | | 1.8 | .480 | | •350 | .240 | .270 | | APR
30 | 12 | 354 | 330 | 2870 | .14 | .230 | 2.40 | •250 | .110 | .130 | | JUL
28 | 17 | 357 | 340 | 931 | .74 | .100 | 1.90 | .410 | .220 | •290 | | SEP
10 | 14 | 406 | 311 | 287 | <.10 | .090 | 1.20 | •130 | •090 | .080 | | DA | TI
TE | ARSE
TOT
ME (UG
AS
(010 | TAL SOL
I/L (UG
AS) AS | S- REC
VED ERA
/L (UG
AS) AS | PAL BAR
COV- DI
ABLE SOL
I/L (U
BA) AS | IUM, TO
S- RE
VED EF
G/L (U
BA) AS | COV- DIABLE SOIG/L (UC) AS | LVED ER#
G/L (UG | JM, CHF
FAL MIU
COV- DIS
ABLE SOI
G/L (UG
CR) AS | M,
S-
VED
(CR) | | | 15 | 40 | 4 | 3 | 100 | 89 | 1 | <1 | 10 | <10 | | | 12 | 230 | 4 | 4 | 100 | 180 | 1 | 1 | <10 | <10 | | APR
30 | 12 | 200 | 5 | 4 | 200 | 65 | 1 | <3 | <10 | <10 | | SEP
10 | | 45 | 5 | 5 | 100 | 150 | <1 | <1 | <10 | <10 | ### 05064500 RED RIVER OF THE NORTH AT HALSTAD, MN--Continued | DATE | COBA
DIS
SOLV
(UG
AS | LT,
-
ED
/L
CO) | OPPER
TOTAL
RECOV
ERABI
(UG/L
AS CU
01042 | COPPI
L DIS-
LE SOLI
(UG, | ER,
-
VED
/L
CU) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE)
01045) | SOL
(UG
AS | S-
VED
/L
FE) | LEA
TOT
REC
ERA
(UG
AS
(010 | AĹ
OV-
BLE
/L
PB) | LEA
DI
SOL
(UG
AS
(010 | S-
VED
/L
PB) | NES
TOT
REC | AL
OV-
BLE
/L
MN) | MANO
NESI
SOL'
(UG,
AS I | E,
S-
VED
/L
MN) | |-----------|----------------------------------|---|---|---|---|---|--|--|---|--|---------------------------------------|------------------------|-----------------------------------|-------------------------------|--------------------------------------|------------------------------| | DEC
18 | | <3 | | 8 | 2 | 430 |) | 21 | | 4 | | 2 | | 50 | | 12 | | MAR
22 | | 1 | 2 | 21 | 3 | 1300 |) | 37 | | 10 | | 4 . | | 160 | | 62 | | APR
30 | | <1 | 1 | .2 | 3 | 3800 |) | 9 | | 7 | | 2 | | 370 | | <3 | | SEP
10 | | 1 | | 6 | 2 | 370 |) | 4 | | <1 | | <1 | | 50 | | 2 | | | DATE | MERCU
TOTA
RECO
ERAB
(UG/
AS H | L M
V-
LE
L
G) | DIS-
SOLVED
(UG/L
AS HG)
71890) | SELE
NIUM
TOTA
(UG/
AS S | - N
L S
L (
E) A | ELE-
IUM,
DIS-
OLVED
UG/L
S SE) | ERA
(UG | CAL
COV-
ABLE
I/L
AG) | SILV
DI
SOL
(UG
AS
(010 | S-
VED
/L
AG) | ERA
(UC | PAL
COV-
ABLE
I/L
ZN) | SOL
(UG | S-
VED
/L
ZN) | | | | EC
18 | | •2 | <.1 | | <1 | <1 | | 1 | | <1 | | 30 | | 7 | | | | AR
22 | | .1 | <.1 | | <1 | <1 | | <1 | | <1 | | 60 | | 46 | | | | PR
30 | | .1 | <.1 | | <1 | <1 | | 1 | | <1 | | 40 | | <12 | | | | EP
10 | | .2 | <.1 | | 1 | <1 | | <1 | | <1 | , | 30 | | 13 | | | ! | DATE | TIM | E | GROSS ALPHA, DIS- SOLVED (UG/L AS U-NAT) 80030) | GROS
ALPH
SUSP
TOTA
(UG/
AS
U-NA
(8004 | A, E L S L (F T) CS | ROSS
BETA,
DIS-
BOLVED
PCI/L
AS
B-137)
(3515) | GRO
BET
SUS
TOT
(PCI
AS
CS-1 | A,
3P.
3P.
2AL
2/L
3 | | A,
S-
VED
I/L
SR/
90) | AS | A,
SP.
SAL
SI/L
SR/ | 22
DI
SOLV
RAD | ON
HOD
/L) | | | | PR
30 | 120 | 0 | <8.3 | 6 | . 4 | 8.9 | | 5.2 | | 8.6 | | 4.9 | | .12 | | | | | | | DATE | TIM | M
S
E P
(| EDI-
ENT,
US-
ENDED
MG/L)
0154) | CHAR
SU | IT,
IS-
IGE,
IS-
IDED
DAY) | SIE | SP.
VE
AM.
NER
AN
MM | | | | | | | | | | | MAR
22 | 123 | n | 60 | | | | 96 | i | 1 | | | | | | | | | APR
30 | 120 | | 189 | 1 | 1530 | | 99 | | | | | | | | | | | DATE | TIM | ST
F
IN
E TA
(| REAM-
LOW,
STAN-
NEOUS
CFS)
0061) | SPE
CIF
CON
DUC
ANC
(UMH | I-
TIC
I-
ET-
IOS) | TEMP
ATU
(DEG
(000 | ER-
RE
C) | ! | ı | | | | | | | | | DEC
18 | 154 | 0 | 475 | | 735 | | .0 | | | | | | | | | | | FEB
03 | 161 | 5 | 309 | | 635 |
 .0 | | | | | | | | | | | MAR
22 | 123 | 0 | E1450 | | 550 | | .0 | 1 | | | | | | | | | | 01
07
16
30
JUN | 095
124
123
120 | 0
5 | 8170
13000
10700
3000 | | 311
339
409
538 | | .0
1.0
6.0
2.5 | | I | | | | | | | | | 09
JUL | 115 | 0 | 1570 | | 560 | 1 | 5.0 | | | | | | | | | | | 28
SEP | 122 | 0 | 966 | | 560 | 2 | 5.0 | | | | | | | | | | | 10 | 134 | 5 | 262 | | 515 | 2 | 3.0 | | | | | | #### 05067500 MARSH RIVER NEAR SHELLY, MN LOCATION.--Lat 47°24'45", long 96°45'50", in NELNWL sec.3, T.145 N., R.48 W., Norman County, Hydrologic Unit 09020107, near center of span on downstream truss of bridge, 3.8 mi (6.1 km) southeast of Shelly and 10 mi (16 km) upstream from mouth. DRAINAGE AREA.--151 m1² (391 km²). PERIOD OF RECORD. -- March 1944 to current year. Monthly discharge only for March 1944, published in WSP 1308. GAGE.--Nonrecording gage and crest-stage gage. Datum of gage is 841.14 ft (356.379 m) National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers). Prior to Oct. 1, 1965, nonrecording gage at datum 3.0 ft (0.914 m) higher. REMARKS.--Records poor. Large part of high flow of Wild Rice River diverted into Marsh River basin at overflow . section 4.6 mi (5.6 km) east of Ada. Another diversion from Wild Rice River basin formed in 1947, 1.5 mi (2.4 km) southeast of Ada and diverted water at all stages 1947-51, after which it was closed except for a small regulated flow diverted for abatement of pollution from Ada sewage plant effluent. AVERAGE DISCHARGE.--38 years, 65.5 ft^3/s (1.855 m^3/s), 47,450 acre-ft/yr (58.5 hm^3/yr); median of yearly mean discharges, 35 ft^3/s (0.99 m^3/s), 25,400 acre-ft/yr (31 hm^3/yr). EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 4,880 ft³/s (138 m³/s) Apr. 19, 1979, gage height, 23.36 ft (7.120 m), from floodmark; no flow for many days most years. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,070 ft 3 /s (30.3 m 3 /s) Apr. 2, gage height, 13.06 ft (3.981 m); no flow Aug. 26 to Sept. 30. | | | DISCHAF | RGE, IN CUB | IC FEET | PER SECO | ND, WATE:
MEAN VAL | R YEAR OCTO
JUES | DBER 1981 | TO SEPTE | MBER 1982 | | | |--------------------------------------|------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|---------------------------------|---------------------------------------|------------------------------------|--------------------------------------|------------------------------------|-----------------------------------|----------------------------------|--------------------| | DAY | OCT | NOA | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .10
.20
.30
.50 | 12
11
9.8
9.0
8.4 | 4.4
4.4
3.7
3.2
2.8 | .12
.12
.12
.12 | .10
.10
.10
.10 | .45
.45
.40
.40 | 756
875
732
462
421 | 13
13
12
6.6
7.2 | 4.8
4.1
3.2
2.4
1.1 | .56
.36
.22
.22 | .08
.06
.06
.12 | .00
.00
.00 | | 6
7
8
9 | 1.0
2.0
3.0
5.0
6.0 | 7.4
7.0
6.4
6.0
6.2 | 2.5
2.2
2.1
1.9
1.6 | .14
.14
.14
.14 | .12
.12
.12
.12 | •35
•35
•35
•30 | 429
364
356
329
293 | 6.6
5.6
8.4
9.6 | 1.3
1.6
2.0
3.1
3.0 | 3.1
1.6
.36
.36
.28 | .82
.32
.22
.15 | .00
.00
.00 | | 11
12
13
14
15 | 8.0
12
16
21
16 | 5.8
5.6
5.2
4.6
4.2 | 1.8
1.9
2.0
2.1
2.1 | .07
.02
.02
.02 | .14
.14
.14
.14 | .30
.30
.30
.30 | 212
263
283
274
340 | 14
48
39
35
31 | 2.8
4.4
4.4
5.0
5.6 | 2.2
2.2
2.2
1.6
.89 | .10
.08
.06
.04 | .00
.00
.00 | | 16
17
18
19
20 | 16
18
24
21
19 | 3.9
3.6
3.4
3.4
3.2 | 1.7
1.3
.89
.75 | .04
.06
.08
.12 | .15
.22
.22
.25
.28 | .60
.96
1.6
20
25 | 785
980
678
415
236 | 30
32
48
84
75 | 5.2
4.8
4.4
3.4
2.8 | 1.6
.89
.45
2.2
2.1 | .02
.02
.02
.04
.02 | .00
.00
.00 | | 21
22
23
24
25 | 24
23
21
21
20 | 3.2
3.4
3.6
3.6
3.7 | .68
.56
.45
.36 | .08
.10
.10
.10 | •35
•45
•40
•40 | 30
40
35
25
22 | 178
147
97
62
45 | 60
45
33
26
19 | 2.2
2.2
1.6
1.0
2.1 | 1.9
.75
2.4
1.6
.50 | .02
.02
.02
.02 | .00
.00
.00 | | 26
27
28
29
30
31 | 19
18
17
15
13 | 3.5
3.4
3.0
3.0
3.1 | .32
.28
.25
.20
.14 | .10
.17
.10
.10
.14 | .50
.50
.45 | 20
20
98
460
609
781 | 34
24
19
14
16 | 16
13
9.8
7.7
5.4
5.0 | 2.1
1.6
1.2
1.3
.96 | .32
.32
.25
.20
.12 | .00
.00
.00
.00 | .00
.00
.00 | | TOTAL
MEAN
MAX
MIN
AC-FT | 393.00
12.7
24
.10
780 | 159.6
5.32
12
3.0
317 | 47.74
1.54
4.4
.10
95 | 3.00
.097
.17
.02
6.0 | 6.39
.23
.50
.10 | 2193.46
70.8
781
.30
4350 | 10119
337
980
14
20070 | 768.9
24.8
84
5.0
1530 | 85.66
2.86
5.6
.96
170 | 36.45
1.18
4.6
.10
72 | 3.82
.12
1.4
.00
7.6 | .00
.000
.00 | CAL YR 1981 TOTAL 2459.48 MEAN 6.74 MAX 628 MIN .00 AC-FT 4880 WTR YR 1982 TOTAL 13817.02 MEAN 37.9 MAX 980 MIN .00 AC-FT 27410 ### 05069000 SAND HILL RIVER AT CLIMAX, MN LOCATION.--Lat 47°36'43", long 96°48'52", in NEłNEł sec.30, T.148 N., R.48 W., Polk County, Hydrologic Unit 09020301, near center of span on downstream side of bridge on U.S. Highway 75 in Climax and 3.7 mi (6.0 km) upstream from mouth. DRAINAGE AREA.--426 mi^2 (1,103 km^2). CAL YR 1981 TOTAL 11020.3 WTR YR 1982 TOTAL 23793.1 MEAN 30.2 MEAN 65.2 PERIOD OF RECORD.--March 1943 to current year (winter records incomplete prior to 1947). Monthly discharge only for some periods, published in WSP 1308 and 1728. REVISED RECORDS.--WSP 1388: 1943(M), 1944, 1947(M). WSP 1728: 1951(M), 1960 (Average discharge). GAGE.--Nonrecording gage and crest-stage gage. Datum of gage is 820.10 ft (249.966 m) National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers). Prior to Oct. 1, 1966, nonrecording gage at site 3.2 mi (5.1 km) upstream at datum 12.78 ft (3.90 m) higher. Nonrecording gage and crest-stage gage at site 3.2 mi (5.1 km) upstream at datum 12.78 ft (3.90 m) higher (used as supplementary gage during periods of backwater from the Red River). REMARKS .-- Records good except those for winter period, which are poor. AVERAGE DISCHARGE.--36 years (water years 1947-82), 69.5 ft 3 /s (1.968 m 3 /s), 50,350 acre-ft/yr (62.1 hm 3 /yr); median of yearly mean discharges, 51 ft 3 /s (1.44 m 3 /s), 36,900 acre-ft/yr (45 hm 3 /yr). EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,560 ft³/s (129 m³/s) Apr. 14, 1965, gage height, 17.81 ft (5.428 m), site and datum then in use; maximum gage height, 32.79 ft (9.994 m) Apr. 23, 1979, from floodmark (backwater from Red River of the North); minimum daily discharge, 1.0 ft³/s (0.03 m³/s) Jan. 17, 18, 1962. EXTREMES FOR CURRENT YEAR.—Maximum discharge, 820 ft 3 /s (23.2 m 3 /s) Apr. 15, gage height, 10.00 ft (3.048 m); maximum gage height, 14.17 ft (4.319 m) Apr. 9 (backwater from ice); minimum daily discharge, 5.5 ft 3 /s (0.16 m 3 /s) Feb. 1-4; minimum gage height, 3.90 ft (1.189 m) Feb. 1, 3. | | | DISCHAR | BE, IN CU | JBIC FEET | PER SECOND |), WATER
EAN VALU | YEAR OCTO | BER 1981 | TO SEPTEM | BER 1982 | , | | |--------------------------------------|----------------------------------|----------------------------------|----------------------------------|--------------------------------------|-----------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|----------------------------------|------------------------------------|---------------------------------------|-----------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 18
15
18
21
22 | 46
45
44
40
37 | 31
32
28
30
35 | 15
15
15
15
14 | 5.5
5.5
5.5
5.5
15 | 10
10
10
10 | 450
440
410
390
370 | 107
96
95
115
107 | 61
56
51
45
39 | 24
21
2 0
30
50 | 23
22
19
17
16 | 9.3
8.9
9.1
8.9
8.7 | | 6
7
8
9
10 | 29
32
32
40
49 | 35
34
33
32
34 | 35
30
26
25
23 | 14
14
14
14
14 | 14
13
12
12 | 10
10
10
10
10 | 350
330
320
310
300 | 95
86
81
77
73 | 37
42
47
51
55 | 71
47
44
52
60 | 15
14
13
13 | 8.4
8.2
8.2
8.0 | | 11
12
13
14
15 | 49
55
68
86
90 | 36
40
38
35
32 | 22
22
22
22
21 | 13
13
13
13 | 11
11
11
11 | 10
11
11
12
14 | 350
450
600
770
800 | 95
113
110
105
100 | 53
47
42
39
36 | 61
60
51
47
46 | 10
11
11
11 | 8.2
8.9
10
20 | | 16
17
18
19
20 | 90
90
99
98
90 | 34
36
34
32
29 | 21
21
20
20
19 | 13
12
12
12
12 | 11
11
10
10 | 17
21
30
40
50 | 645
447
372
348
304 | 120
186
340
384
370 | 32
32
29
25
25 | 43
47
52
45
43 | 11
10
12
19
14 | 11
11
14
12 | | 21
22
23
24
25 | 87
90
82
78
72 | 27
26
38
39
43 | 19
18
18
18 | 12
11
11
11
10 |
10
10
10
10 | 46
42
38
34
32 | 259
230
199
174
160 | 304
240
193
167
142 | 25
22
20
21
22 | 44
42
46
45
39 | 9.8
11
11 | 9.1
9.8
9.8
9.5 | | 26
27
28
29
30
31 | 67
60
60
55
52
51 | 31
34
33
32
32 | 17
17
16
16
16
15 | 10
10
9.0
8.0
7.0
6.0 | 10
10
10
 | 30
40
70
150
300
450 | 148
139
130
120
110 | 128
118
100
88
75
67 | 21
20
25
25
25
 | 36
34
31
31
28
25 | 10
9.5
9.1
9.5
8.9
9.3 | 10
10
10
11
14 | | TOTAL
MEAN
MAX
MIN
AC-FT | 1845
59•5
99
15
3660 | 1061
35.4
46
26
2100 | 692
22.3
35
15
1370 | 375.0
12.1
15
6.0
744 | 287.0
10.3
15
5.5
569 | 1548
49.9
450
10
3070 | 10425
348
800
110
20680 | 4477
144
384
67
8880 | 1070
35•7
61
20
2120 | 1315
42.4
71
20
2610 | 393.1
12.7
23
8.9
780 | 305.0
10.2
20
8.0
605 | MIN 7.7 MIN 5.5 AC-FT MAX 800 ### 05074000 LOWER RED LAKE NEAR RED LAKE, MN - LOCATION.--Lat 47°57'27", long 95°16'34", in SW&NW& sec.28, T.152 N., R.36 W., Clearwater County, Hydrologic Unit 09020302, on Red Lake Indian Reservation, on left bank just upstream from dam at outlet, 13 mi (21 km) northwest of village of Red Lake. - DRAINAGE AREA.--1,950 m1² (5,050 km²), approximately. - PERIOD OF RECORD.--June 1930 to November 1932 (published as Red Lake at Redby), May 1933 to current year (published as Red Lake near Red Lake 1933-40); records on Upper Red Lake published as Red Lake at Waskish, April 1930 to September 1933, all in reports of Geological Survey. October 1921 to September 1929 gage heights at Redby and on Upper Red Lake at Waskish in files of Minnesota Department of Conservation (fragmentary). - GAGE.--Water-stage recorder. Datum of gage is 1,169.00 ft (356.311 m), adjustment of 1912 (levels by Corps of Engineers); gage readings have been reduced to elevations based on adjustment of 1912. May 1933 to Sept. 6, 1934, nonrecording gage at same site and datum. Nonrecording gages at Waskish and Redby at datum 69.00 ft (21.031 m) lower. - REMARKS .-- Water level subject to fluctuation caused by change in direction and velocity of wind and by seiches. - EXTREMES FOR PERIOD OF RECORD.--Maximum gage height, 1178.53 ft (359.216 m) June 25, 1950; minimum recorded, 1169.80 ft (356.555 m) Nov. 20, 1936. - EXTREMES FOR CURRENT YEAR.--Maximum gage height, 1175.94 ft (358.427 m) July 5; maximum daily, 1175.06 ft (358.158 m) May 20; minimum, 1173.52 ft (357.689 m) Nov. 10, 30; minimum daily, 1173.76 ft (357.762 m) Mar. 6. ### MONTHEND ELEVATION, IN FEET, OCTOBER 1981 TO SEPTEMBER 1982 | Oct. 31 1173.82 | Feb. 28 1173.81 | June 30 1174.64 | |-----------------|-----------------|-----------------| | Nov. 30 1173.80 | Mar. 31 1173.85 | July 31 1174.77 | | Dec. 31 1173.92 | Apr. 30 1174.50 | Aug. 31 1174.29 | | Jan. 30 1173.85 | May 31 1174.78 | Sept.301173.92 | NOTE .-- Mean daily gage heights are available. ### 05074500 RED LAKE RIVER NEAR RED LAKE, MN LOCATION.--Lat 47°57'27", long 95°16'35", in SW&NW& sec.28, T.152 N., R.36 W., Clearwater County, Hydrologic Unit 09020302, on Red Lake Indian Reservation, on left bank 50 ft (15 m) downstream from dam at outlet of Lower Red Lake and 13 mi (21 km) northwest of village of Red Lake. DRAINAGE AREA.--1,950 mi² (5,050 km²), approximately. PERIOD OF RECORD.--May 1933 to current year. Monthly discharge only for May 1933, published in WSP 1308. GAGE.--Water-stage recorder. Datum of gage is 1,167.00 ft (355.702 m), adjustment of 1912 (levels by Corps of Engineers). Prior to Sept. 7, 1934, nonrecording gage at site 50 ft (15 m) upstream at datum 2.00 ft (0.610 m) higher. Sept. 7, 1934, to Nov. 26, 1951, water-stage recorder at present site at datum 2.00 ft (0.610 m) higher. REMARKS .-- Records fair. Flow completely regulated by outlet dam on Lower Red Lake. AVERAGE DISCHARGE.--49 years, 489 ft 3 /s (13.85 m 3 /s), 354,300 acre-ft/yr (437 hm 3 /yr). EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 3,600 ft 3 /s (102 m 3 /s) June 25, 1950, gage height, 11.19 ft (3.411 m), affected by seiches and backwater from aquatic vegetation, present datum, from rating curve extended above 1,400 ft 3 /s (39.6 m 3 /s); no flow at times. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,170 ft 3 /s (33.1 m 3 /s) July 4, gage height, 5.94 ft (1.811 m); maximum gage height, 6.03 ft (1.838 m) July 24; minimum daily discharge, 80 ft 3 /s (2.27 m 3 /s) Apr. 11. | | | DISCHARGE | , IN C | UBIC FEET | PER SECON | ID, WATER
MEAN VALU | YEAR OCTO | BER 1981 | TO SEPTE | 1BER 1982 | | | |--------------------------------------|--|---------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--|----------------------------------|---|--------------------------------------|--|--|-------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 375
360
360
3 7 2
375 | 676
669
669
673
673 | 676
662
680
680
680 | 650
650
650
650 | 660
660
660
660 | 680
680
680
680 | 140
89
167
140
119 | 90
87
84
243
519 | 1010
999
992
984
976 | 934
930
942
946
965 | 1050
1050
1050
1040
1040 | 904
900
896
896
900 | | 6
7
8
9
10 | 508
709
727
730
738 | 669
666
666
651
644 | 680
680
680
680
680 | 650
650
650
650 | 660
660
660
660 | 680
680
690
690 | 104
84
84
84
99 | 542
542
525
525
539 | 972
988
976
984
972 | 961
961
949
968
968 | 1040
1030
1020
1010
1000 | 893
885
882
878
878 | | 11
12
13
14
15 | 730
727
730
727
723 | 644
640
640
644
648 | 680
680
680
600
550 | 650
650
650
650 | 670
670
670
670
670 | 690
690
690
690 | 80
90
94
107
128 | 56 7
560
550
550
560 | 961
961
953
949
953 | 961
961
961
957
984 | 992
980
980
976
972 | 885
893
893
900
889 | | 16
17
18
19
20 | 720
727
730
712
712 | 648
644
644
644
634 | 550
550
550
550
550 | 650
650
650
650 | 670
670
670
670
670 | 690
690
690
700
700 | 143
128
109
102
109 | 600
700
900
1000
1050 | 946
953
946
942
942 | 996
996
972
972
976 | 972
968
972
968
957 | 874
882
874
870
863 | | 21
22
23
24
25 | 709
702
694
680
684 | 623
616
612
609
612 | 550
550
600
650
650 | 650
650
650
650 | 670
670
680
680
680 | 700
698
669
666
658 | 111
116
114
109
101 | 1050
1050
1050
1050
1040 | 930
927
927
934
927 | 992
988
984
1040
1040 | 957
961
953
946
934 | 859
856
856
867
852 | | 26
27
28
29
30
31 | 680
687
680
680
676
680 | 620
630
648
655
626 | 650
650
650
650
650 | 650
650
660
660
660 | 680
680
680
 | 623
616
588
553
364
138 | 94
89
92
84
96 | 1040
1030
1020
1030
1020 | 927
927
946
946
938 | 1050
1050
1050
1060
1050
1040 | 927
923
915
911
908
904 | 848
848
878
885
874 | | TOTAL
MEAN
MAX
MIN
AC-FT | 20044
647
738
360
39760 | 645
676
609 | 19618
633
680
550
38910 | 20190
651
660
650
40050 | 18720
669
680
660
37130 | 20023
646
700
138
39720 | 3206
107
167
80
6360 | 22133
714
1050
84
43900 | 28688
956
1010
927
56900 | 30604
987
1060
930
60700 | 30306
978
1050
904
60110 | 26358
879
904
848
52280 | CAL YR 1981 TOTAL 108177 MEAN 296 MAX 738 MIN 34 AC-FT 214600 WTR YR 1982 TOTAL 259227 MEAN 710 MAX 1060 MIN 80 AC-FT 514200 ### 05075000 RED LAKE RIVER AT HIGH LANDING, NEAR GOODRIDGE, MN LOCATION.--Lat 48°02'34", long 95°48'28", in NW&NW& sec.28, T.153 N., R.40 W., Pennington County, Hydrologic Unit 09020303, on left bank 50 ft (15 m) upstream from highway bridge at High Landing, 7 mi (11 km) south of Goodridge and 33 mi (53 km) upstream from Thief River. DRAINAGE AREA.--2,300 mi² (6,000 km²), approximately. PERIOD OF RECORD. -- September 1929 to current year. Prior to October 1930, published as "at Kratka". GAGE.--Water-stage recorder. Datum of gage is 1,141.57 ft (347.951 m), adjustment of 1912 (levels by Corps of Engineers). See WSP 1308 or 1738 for history of changes prior to Oct. 1, 1949. REMARKS .-- Records good except those for winter period, which are fair. Flow regulated by outlet dam on Lower Red AVERAGE DISCHARGE.--53 years, 543 ft 3 /s (15.38 m 3 /s), 393,400 acre-ft/yr (485 hm 3 /yr). EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,060 ft³/s (115 m³/s) July 7, 1975, gage height, 13.39 ft (4.081 m); maximum gage height, 13.44 ft (4.097 m) July 3, 1975; no flow during infrequent periods in 1931-34, 1936-37. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,800 ft 3 /s (51.0 m 3 /s) Apr. 15, gage height, 10.37 ft (3.161 m) (backwater from ice); minimum daily, 304 ft 3 /s (8.61 m 3 /s) May 3; minimum gage height, 3.26 ft (0.994 m) May 3. DISCHARGE, IN CUBIC FEET PER SECOND, WATER
YEAR OCTOBER 1981 TO SEPTEMBER 1982 | | | DIBURAN | JE, IN CO | DIO FEEL 1 | ren seud | MEAN VALU | JES | 100EK 1901 | TO SEFTE | MDER 1902 | | | |--------------------------------------|--|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|---|--------------------------------------|--|---------------------------------------|--|--|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 527
520
502
505
517 | 822
826
826
824
813 | 818
762
787
727
746 | 680
680
680
680 | 680
680
680
680 | 690
690
690
690 | 500
500
420
440
440 | 328
307
304
718
1100 | 1160
1150
1140
1120
1100 | 1020
1010
996
980
1070 | 1200
1180
1170
1140
1110 | 926
918
912
918
912 | | 6
7
8
9
10 | 540
611
762
830
858 | 809
811
803
803
786 | 760
780
800
810
810 | 680
680
680
680
680 | 680
680
680
680
680 | 690
690
690
690 | 460
480
500
540
580 | 1210
1090
1030
984
975 | 1100
1110
1110
1130
1180 | 1090
1060
1030
1030
1040 | 1100
1080
1060
1030
1030 | 920
927
923
916
916 | | 11
12
13
14
15 | 870
886
887
873
866 | 785
795
793
788
795 | 780
750
730
720
700 | 680
680
680
680
680 | 680
680
680
680 | 700
700
700
700
700 | 640
740
860
1100
1610 | 1100
1130
1100
1080
1120 | 1160
1130
1110
1090
1080 | 1030
1010
1000
1000
1000 | 1020
1020
1010
1000
996 | 919
921
936
941
943 | | 16
17
18
19
20 | 860
860
862
864
858 | 813
810
813
817
812 | 700
690
680
680
680 | 680
680
680
680 | 680
680
680
680
680 | 700
700
700
700
700 | 1260
1030
884
809
739 | 1100
1210
1400
1540
1590 | 1070
1060
1060
1050
1050 | 1040
1080
1070
1070
1060 | 985
988
985
972
965 | 947
952
945
937
935 | | 21
22
23
24
25 | 854
850
838
837
822 | 865
882
789
774
776 | 680
680
680
680
680 | 680
680
680
680 | 690
690
690
690 | 700
700
700
700
700 | 712
694
671
634
578 | 1580
1540
1500
1450
1410 | 1040
1040
1040
1020
1010 | 1120
1150
1120
1250
1440 | 962
975
978
970
962 | 939
941
937
940
948 | | 26
27
28
29
30
31 | 832
830
842
851
848
826 | 784
709
754
794
755 | 680
680
680
680
680 | 680
680
680
680
680 | 690
690
690
 | 700
700
720
820
1000
900 | 511
461
424
392
349 | 1380
1350
1310
1270
1220
1190 | 1010
996
1010
1060
1040 | 1420
1350
1290
1270
1260
1230 | 948
944
942
936
926
929 | 949
947
1010
1030
1020 | | TOTAL
MEAN
MAX
MIN
AC-FT | 24088
777
887
502
47780 | 24026
801
882
709
47660 | 22390
722
818
680
44410 | 21080
680
680
680
41810 | 19120
683
690
680
37920 | 22240
717
1000
690
44110 | 19958
665
1610
349
39590 | 35616
1149
1590
304
70640 | 32426
1081
1180
996
64320 | 34586
1116
1440
980
68600 | 31513
1017
1200
926
62510 | 28225
941
1030
912
55980 | | CAL YR
WTR YR | 1981 TOT
1982 TOT | | MEAN
MEAN | | 887
1610 | MIN 60
MIN 304 | AC-FT
AC-FT | 248300
625300 | | | | | #### 05076000 THIEF RIVER NEAR THIEF RIVER FALLS, MN LOCATION.--Lat 48°11'08", long 96°10'11", in NW\SW\sec.3, T.154 N., R.43 W., Marshall County, Hydrologic Unit 09020304, on right bank, 0.2 mi (0.3 km) upstream from highway bridge, 5 mi (8 km) north of city of Thief River Falls, 7 mi (11 km) upstream from mouth, and 9 mi (14 km) downstream from Mud Lake National Wildlife Refuge. DRAINAGE AREA.--959 mi² (2,484 km²). PERIOD OF RECORD.--July 1909 to September 1917, April 1920 to September 1921, October 1922 to September 1924, October 1928 to September 1981. Monthly discharge only for some periods, annual maximums for water years 1919, 1922, 1925, 1926, published in WSP 1308. October 1981 to February 1982, operated as a high-flow partial-record station March to September 1982. REVISED RECORDS.--WSP 925: Drainage area. WSP 1308: 1917(M), 1924(M), 1929(M), 1931-33(M), 1935(M), 1937(M). GAGE.--Water-stage recorder and control of grouted boulders. Datum of gage is 1,112.33 ft (339.038 m) National Geodetic Vertical Datum of 1929 (levels by Minnesota Department of Transportation). Prior to May 4, 1939, nonrecording gages at same site and datum. REMARKS .-- Records good except those for winter period, which are poor. Some regulation by Thief and Mud Lakes. AVERAGE DISCHARGE.--64 years (water years 1910-1917, 1921, 1923-1924, 1929-1981), 158 ft 3 /s (4.475 m 3 /s), 114,500 acre-ft/yr (141 hm 3 /yr); median of yearly mean discharges, 106 ft 3 /s (3.00 m 3 /s), 76,800 acre-ft/yr (95 hm 3 /yr). EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,610 ft³/s (159 m³/s) May 13, 1950, gage height, 17.38 ft (5.297 m); no flow at times in some years. EXTREMES FOR CURRENT YEAR.—Maximum discharge, 2,130 ft^3/s (60.3 m^3/s) May 4, gage height, 11.27 ft (3.435 m); maximum gage height, 12.49 ft (3.807 m) Apr. 14 (backwater from ice); no flow on several days. # DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 MEAN VALUES | | | | | | | HILAI VALO | пр | | | | | | |--------------------------------------|-----|-----|-----|-----|-------------------|---------------------------------------|--|---|----------------------------------|--|----------------------------------|-----------------------------------| | YAG | OCT | NOA | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | | | | | | .00
.00
.00
.00 | 370
340
320
300
280 | 869
841
879
1840
1450 | 345
316
294
195
173 | 97
88
66
54
142 | 286
269
262
255
247 | 21
23
22
20
19 | | 6
7
8
9
10 | | | | | | .00
.00
.00
.00 | 260
250
240
230
220 | 1210
879
822
775
759 | 170
171
171
185
197 | 238
211
170
154
153 | 213
193
190
189
189 | 18
18
17
17 | | 11
12
13
14
15 | | | | | | .00
.00
.00
.01 | 3 0 0
600
900
1150
1390 | 808
828
815
779
759 | 196
191
185
181
176 | 137
124
142
150
157 | 187
184
183
180
149 | 9.5
6.6
4.9
3.9 | | 16
17
18
19
20 | | | | | | .04
.06
.08
.10 | 1620
1890
1890
1820
1660 | 805
869
978
1 0 00
978 | 171
166
164
162
160 | 140
179
240
212
213 | 120
116
117
118
114 | 3.6
3.4
2.9
2.6
2.1 | | 21
22
23
24
25 | | | | | .00 | .30
.70
1.3
1.4
1.5 | 1540
1480
1420
1320
1170 | 926
858
739
680
642 | 156
106
97
92
91 | 308
277
238
235
220 | 112
106
102
101
98 | 1.8
1.9
1.9
1.8
1.5 | | 26
27
28
29
30
31 | | | | | .00
.00
.00 | 1.5
1.5
1.5
10
100
400 | 1110
1040
992
933
889 | 610
509
472
459
451
436 | 89
88
90
98
98 | 208
197
181
225
293
305 | 96
92
69
41
28
23 | 1.3
1.5
3.1
3.6
3.2 | | TOTAL
MEAN
MAX
MIN
AC-FT | | | | | | 520.21
16.8
400
.00
1030 | 27924
931
1890
220
55390 | 25725
830
1840
436
51030 | 4974
166
345
88
9870 | 5754
186
308
54
11410 | 4629
149
286
23
9180 | 267.1
8.90
23
1.3
530 | ### 05078000 CLEARWATER RIVER AT PLUMMER, MN LOCATION.--Lat 47°55'24", long 96°02'46", in SE\SW\ sec. 4, T.151 N., R.42 W., Red Lake County, Hydrologic Unit 09020305, on right bank 200 ft (61 m) downstream from Soo Line Railroad bridge, 300 ft (91 m) downstream from bridge on U.S. Highway 59, 0.9 mi (1.4 km) northwest of railroad depot in Plummer, and 8 mi (13 km) upstream from Hill River. DRAINAGE AREA.--512 mi^2 (1,326 km^2). PERIOD OF RECORD.--April 1939 to September 1979. October 1979 to February 1982, annual maximums only. March to September 1982. GAGE.--Water-stage recorder. Datum of gage is 1,099.12 ft (335.012 m), adjustment of 1912 (levels by Corps of Engineers). Prior to Nov. 10, 1939, nonrecording gage at site 100 ft (30 m) upstream at same datum. REMARKS.--Records good except those for winter period, which are poor. Since 1968, undetermined amounts of water diverted for the flooding of wild rice paddies upstream. AVERAGE DISCHARGE.--40 years (water years 1940-79), 179 ft³/s (5.069 m³/s), 129,700 acre-ft/yr (160 hm³/yr). EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 3,940 ft 3 /s (112 m 3 /s) Apr. 25, 1979, gage height, 12.31 ft (3.752 m); maximum gage height, 12.37 ft (3.770 m) Apr. 18, 1979 (backwater from ice); minimum discharge, 2.5 ft 3 /s (0.071 m 3 /s) May 16, 17, 1977, gage height, 1.71 ft (0.521 m). EXTREMES FOR CURRENT YEAR.--Peak discharge above base of 500 ft³/s (14.2 m³/s) and maximum (*):
 Date | Time | Disch
(ft ³ /s) | arge
(m ³ /s) | Gage
(ft) | height (m) | Date | Time | Disch
(ft ³ /s) | arge
(m ³ /s) | Gage h
(ft) | neight
(m) | |-----------------------------|----------------------|-------------------------------|-----------------------------|------------------------|-------------------------|--|------------------------------|-------------------------------|------------------------------|------------------------------|----------------------------------| | Mar. 31
Apr. 16
May 5 | 1030
1700
2330 | 957
*1700
92 7 | 27.1
48.1
26.3 | a*9.20
8.71
6.67 | 2.804
2.655
2.033 | May 12
May 20
July 17
July 25 | 0530
0230
0900
2000 | 574
1040
519
516 | 16.3
29.5
14.7
14.6 | 5.35
7.04
5.09
5.09 | 1.631
2.146
1.551
1.551 | #### Backwater from ice. Minimum discharge (March to September 1982), 33 ft 3 /s (0.93 m 3 /s) Aug. 30 to Sept. 3 and Sept. 9, 10; minimum gage height, 2.40 ft (0.732 m) Sept. 9, 10. | | | DISCHARGE | E, IN CUE | BIC FEET | | , WATER
EAN VALU | YEAR OCTOB
ES | ER 1981 ' | TO SEPTEM | MBER 1982 | | , | |--------------------------------------|-----|-----------|-----------|----------|-----------------------|--------------------------------------|--------------------------------------|--|----------------------------------|--|----------------------------------|----------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | | | | | | 86
83
81
80
110 | 850
750
700
650
600 | 223
212
203
576
884 | 227
208
188
190
185 | 193
175
166
167
292 | 312
273
239
225
206 | 33
33
35
39
37 | | 6
7
8
9
10 | | | | | | 100
70
80
82
81 | 560
540
520
500
500 | 858
572
436
357
338 | 176
182
178
167
210 | 326
251
220
207
224 | 198
192
166
144
135 | 35
36
36
34
37 | | 11
12
13
14
15 | | | | | | 80
80
80
80
80 | 500
600
800
970
1150 | 448
569
514
466
543 | 211
193
172
152
123 | 233
226
211
188
176 | 160
138
119
111
106 | 37
40
41
44
48 | | 16
17
18
19
20 | | | | | | 80
79
79
79
79 | 1590
1490
1260
1230
1210 | 713
743
901
1010
1030 | 101
101
98
98
109 | 262
466
350
299
268 | 88
75
82
73
59 | 51
59
59
59
53 | | 21
22
23
24
25 | | | | | 160
200 | 79
79
79
80
80 | 1150
1030
910
799
697 | 936
786
632
533
459 | 114
113
117
126
129 | 400
462
408
372
486 | 55
55
53
45 | 50
48
47
42
42 | | 26
27
28
29
30
31 | | | | | 160
120
100
 | 80
82
100
250
500
900 | 608
470
344
286
230 | 395
382
355
323
285
260 | 128
128
136
211
221 | 462
363
296
298
333
307 | 43
40
37
36
33
33 | 42
47
53
64
88 | | TOTAL
MEAN
MAX
MIN
AC-FT | | | | | | 3958
128
900
70
7850 | 23494
783
1590
230
46600 | 16942
547
1030
203
33600 | 4692
156
227
98
9310 | 9087
293
486
166
18020 | 3580
115
312
33
7100 | 1369
45•6
88
33
2720 | ### 05078230 LOST RIVER AT OKLEE, MN LOCATION.--Lat 47°50'35", long 95°51'30", in SELNEL sec.2, T.150 N., R.41 W., Red Lake County, Hydrologic Unit 09020305, on downstream side of bridge on State Highway 222 at northwest edge of Oklee, 12 mi (19 km) upstream from mouth. DRAINAGE AREA. -- 266 mi² (689 km²). PERIOD OF RECORD. -- April 1960 to September 1981, February to September 1982. Monthly and daily figures for Apr. 1, 1960, to June 30, 1960, published in WSP 2113. GAGE.--Nonrecording gage and crest-stage gage. Datum of gage is 1,126.94 ft (343.391 m), adjustment of 1912 (levels by Corps of Engineers). Prior to Sept. 9, 1960, reference points at same site at datum 8.00 ft (2.438 m) higher. Sept. 9, 1960, to Sept. 30, 1964, nonrecording gage at same site at datum 8.00 ft (2.438 m) higher. REMARKS.--Records fair except those for the winter period and those for period of indefinite stage-discharge relation (Aug. 27 to Sept. 30), which are poor. AVERAGE DISCHARGE.--21 years (water years 1961-81), 75.9 ft³/s (2.149 m³/s), 54,990 acre-ft/yr (67.8 hm³/yr). EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,210 ft³/s (90.9 m³/s) Apr. 11, 1969, gage height, 14.91 ft (4.545 m), from floodmark; maximum gage height, 16.72 ft (5.096 m), present datum, May 24, 1962; no flow Feb. 16 to Mar. 21, 1963, Feb. 15 to Mar. 2, 1964, Jan. 6 to Mar. 11, 1977. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage known since at least 1897, 18.39 ft (5.605 m) present datum, Apr. 21, 1950 from floodmarks, discharge, 2,790 ft³/s (79.0 m³/s). EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,320 ft³/s (37.4 m³/s) Apr. 16, gage height, 12.04 ft (3.670 m); maximum gage height, 13.01 ft (3.965 m) Apr. 1, from high-water mark (backwater from ice); minimum daily discharge (February to September), 1.3 ft³/s (0.037 m³/s) Sept. 11. # DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--------------------------------------|-----|-----|-----|-----|-------------------|--------------------------------------|--------------------------------------|-------------------------------------|----------------------------------|-----------------------------------|--|----------------------------------| | 1
2
3
4
5 | | | | | | 8.0
8.0
8.5
8.5 | 800
700
600
550
500 | 123
111
110
178
446 | 66
51
49
44
40 | 41
27
20
15
32 | 44
40
30
24
18 | 3.5
3.0
2.6
2.3
2.0 | | 6
7
8
9
10 | | | | | | 8.5
9.0
9.0
9.0 | 490
480
470
460
450 | 274
214
174
133
139 | 40
48
46
57
73 | 61
65
44
39
69 | 9.9
7.8
6.7
5.4 | 1.8
1.7
1.6
1.5 | | 11
12
13
14
15 | | | | | | 9.5
9.5
9.5
10 | 450
600
900
1110
1120 | 555
444
312
257
321 | 64
62
47
34
30 | 61
44
32
27
22 | 6.2
5.8
5.2
5.0 | 1.3
3.0
2.6
2.2
2.0 | | 16
17
18
19
20 | | | | | | 12
13
25
25
20 | 1080
846
638
521
410 | 300
549
829
615
495 | 26
24
22
21
22 | 27
263
131
83
61 | 4.4
3.8
3.8
4.0
4.2 | 5.0
4.5
4.0
3.5
3.0 | | 21
22
23
24
25 | | | | | 7.5
7.5 | 19
19
19
19
20 | 455
279
257
237
204 | 387
281
218
178
170 | 22
19
20
24
22 | 534
419
249
155
161 | 5.6
5.8
7.1
8.0 | 2.7
2.4
2.1
1.9
1.7 | | 26
27
28
29
30
31 | | | | | 7.5
7.5
8.0 | 20
21
23
30
100
900 | 175
168
152
142
132 | 139
122
103
95
83
76 | 19
11
11
33
58 | 93
62
44
44
61
53 | 8.6
7.0
6.0
5.0
4.5
4.0 | 1.6
3.0
7.0
10 | | TOTAL
MEAN
MAX
MIN
AC-FT | | | | | | 1420.0
45.8
900
8.0
2820 | 15376
513
1120
132
30500 | 8431
272
829
76
16720 | 1105
36.8
73
11
2190 | 3039
98.0
534
15
6030 | 318.6
10.3
44
3.8
632 | 94.9
3.16
10
1.3
188 | ### 05078500 CLEARWATER RIVER AT RED LAKE FALLS, MN LOCATION.--Lat 47°53'15", long 96°16'25", in NW&NE& sec.22, T.151 N., R.44 W., Red Lake County, Hydrologic Unit 09020305, on left bank 40 ft (12 m) downstream from Great Northern Railroad bridge in Red Lake Falls, 1.4 mi (2.3 km) upstream from mouth, and 3 mi (5 km) downstream from Badger Creek. DRAINAGE AREA.--1,370 mi² (3,550 km²), approximately. PERIOD OF RECORD.--June 1909 to September 1917, October 1934 to September 1981. Monthly discharge only for October, November, 1934, published in WSP 1308. October 1981 to February 1982, operated as a high-flow partial-record station. March to September 1982. REVISED RECORDS.--WSP 355: 1911-12. WSP 1438: 1910-11, 1917(M). GAGE.--Water-stage recorder. Datum of gage is 949.49 ft (289.405 m), adjustment of 1912 (levels by Corps of Engineers). Prior to Sept. 12, 1911, nonrecording gage at site 0.5 mi (0.8 km) upstream and Sept. 12, 1911, to Sept. 30, 1917, nonrecording gage at site 40 ft (12 m) upstream at different datum. REMARKS. -- Records good except those for winter period, which are poor. AVERAGE DISCHARGE.--55 years (water years 1910-17, 1935-81), 315 ft³/s (8.921 m³/s), 228,200 acre-ft/yr (281 hm³/yr); median of yearly mean discharges, 283 ft³/s (8.01 m³/s), 205,000 acre-ft/yr (253 hm³/yr). EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 10,300 ft³/s (292 m³/s) Apr. 25, 1979, gage height, 12.38 ft (3.773 m); maximum gage height observed, 17.5 ft (5.344 m) Apr. 5, 1913, site and datum then in use (backwater from ice); no flow Sept. 15, 1936, Sept. 14, 1939, Aug. 19-22, 1940. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 4,160 ft³/s (118 m³/s) Apr. 15, gage height, 7.76 ft (2.365 m); maximum gage height, 10,70 ft (3.261 m) Mar. 31 (backwater from ice); minimum discharge (March to September 1982), 29 ft³/s (0.82 m³/s) Sept. 11, gage height, 1.78 ft (0.543 m). # DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 MEAN VALUES | DAY | ост | NOV | DEC | JAN | FEB | MAR | APR | YAM | JUN | JUL | AUG | SEP | |--------------------------------------|-----|-----|-----
-----|-----|--|--|--|------------------------------------|--|----------------------------------|----------------------------------| | 1
2
3
4
5 | | | | | | 120
110
98
95
97 | 2940
2890
2630
2430
2230 | 635
596
561
806
1540 | 514
455
410
380
368 | 28 2
23 9
20 9
20 5
26 4 | 431
416
345
310
275 | 40
36
36
36
38 | | 6
7
8
9 | | | | | | 150
125
80
68
92 | 2040
1850
1670
1510
1370 | 1700
1300
972
809
725 | 351
364
358
361
392 | 420
372
299
273
259 | 266
251
230
200
173 | 38
36
36
34
37 | | 11
12
13
14
15 | | | | | | 93
93
94
94 | 1380
1550
2060
2810
3520 | 914
1480
1330
1140
1140 | 452
412
361
312
267 | 284
290
263
266
224 | 168
187
165
147
142 | 31
38
40
43
41 | | 16
17
18
19
20 | | | | | | 110
150
200
300
200 | 3920
3840
3110
2720
2460 | 1470
1680
2200
2410
2170 | 221
197
183
175
170 | 210
673
709
509
417 | 135
116
101
102
92 | 52
58
67
65
67 | | 21
22
23
24
25 | | | | | | 190
190
200
200
210 | 2220
2010
1780
1600
1400 | 1870
1590
1320
1100
955 | 175
176
178
181
188 | 1010
1250
921
688
620 | 79
77
74
73
66 | 64
60
55
54
46 | | 26
27
28
29
30
31 | | | | | | 210
210
210
700
2700
3400 | 1250
1090
901
791
688 | 840
750
719
644
599
549 | 191
183
189
212
281 | 653
546
445
421
443
461 | 62
59
55
49
41
41 | 41
44
52
64
71 | | TOTAL
MEAN
MAX
MIN
AC-FT | | | | | | 10882
351
3400
68
21580 | 62660
2089
3920
688
124300 | 36514
1178
2410
549
72430 | 8657
289
514
170
17170 | 14125
456
1250
205
28020 | 4928
159
431
41
9770 | 1420
47.3
71
31
2820 | ### 05079000 RED LAKE RIVER AT CROOKSTON, MN LOCATION.--Lat 47°46'32", long 96°36'33", in SW&SW& sec.30, T.150 N., R.46 W., Polk County, Hydrologic Unit 09020303, on right bank at downstream side of Sargent Street bridge in Crookston, 0.3 mi (0.5 km) downstream from Interstate Power Co.'s dam, 0.6 mi (1.0 km) downstream from bridge on U.S. Highway 75, and 53 mi (85 km) upstream from mouth. DRAINAGE AREA. -- 5,280 mi² (13,680 km²), approximately. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--May 1901 to current year. Monthly discharge only for some periods, published in WSP 1308. Figures of daily discharge for Apr. 3-30, 1904, published in WSP 130, have been found unreliable and should not be used. REVISED RECORDS.--WSP 1115: 1906, 1915-16, 1919-20, 1922, 1925, 1927, 1929. WSP 1308: 1916(M), 1919(M), 1928(M), 1930(M). See also PERIOD OF RECORD. GAGE.--Water-stage recorder. Datum of gage is 832.72 ft (253.813 m) National Geodetic Vertical Datum of 1929. May 18, 1901, to June 30, 1909, nonrecording gage at bridge 300 ft (91 m) upstream at same datum. July 1, 1909, to Sept. 25, 1911, nonrecording gage, Sept. 26, 1911, to Sept. 30, 1919, water-stage recorder, Oct. 1, 1919, to Sept. 30, 1930, nonrecording gage, at present site and datum. REMARKS.--Records good except those for winter period, which are fair. Diurnal fluctuation prior to 1975 caused by powerplant 1,000 ft (300 m) upstream. Runoff from 1,950 mi² (5,050 km²) in the headwaters of Red Lake River is completely controlled by dam at outlet of Lower Red Lake. Flow partially affected by occasional regulation at Thief and Mud Lakes in Thief River basin (see station 05076000). AVERAGE DISCHARGE.--81 years, 1,122 ft3/s (31.78 m3/s), 812,900 acre-ft/yr (1,000 hm3/yr). EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 28,400 ft 3 /s (804 m 3 /s) Apr. 12, 1969, gage height, 27.33 ft (8.330 m); no flow for part of July 13, 1960 (caused by regulation of powerplant upstream). EXTREMES FOR CURRENT YEAR.--Maximum discharge, 9,320 ft 3 /s (264 m 3 /s) Apr. 17, gage height, 16.12 ft (4.913 m); maximum gage height, 18.52 ft (5.645 m) Apr. 1 (backwater from ice); minimum discharge, 597 ft 3 /s (16.9 m 3 /s) Dec. 7, gage height, 3.86 ft (1.177 m). DISCHARGE. IN CUBIC FEET PER SECOND. WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | DAY
1
2
3 | ост
932
1670 | NOV | DEC | 7.437 | | | | | | | | | |----------------------------------|--|---------------------------------------|--------------------------------------|--|-------------------------------------|---|--|--|---|---|---|--------------------------------------| | 1 2 | | | | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 3
4
5 | 1970
1690
1550 | 1270
1240
1220
1210
1160 | 1070
1060
1030
998
860 | 1000
1000
1000
1000
1000 | 960
950
950
950
940 | 870
870
860
860
850 | 5600
5000
4500
4200
4000 | 2200
2100
1960
2050
4770 | 2300
2170
2030
1960
1870 | 1560
1510
1430
1380
1490 | 2020
1960
1900
1720
1700 | 1070
991
1010
992
924 | | 6
7
8
9 | 1710
2120
2020
1760
1750 | 1190
1150
1150
1150
1150 | 688
765
780
840
900 | 1000
1000
1000
990
990 | 940
940
940
930
930 | 850
840
830
830
820 | 3700
3400
3300
3300
3300 | 4760
4340
3460
2990
2770 | 1790
1810
1810
1850
1960 | 2030
2110
1970
1800
1700 | 1680
1610
1530
1460
1400 | 958
1050
923
943
981 | | 11
12
13
14 | 1730
1790
2510
3250
2770 | 1140
1120
1120
1120
1130 | 960
980
1000
1000 | 990
990
990
990
990 | 930
920
920
920
910 | 820
810
810
800
800 | 3400
3500
3800
4300
7510 | 2720
3190
3580
3360
3230 | 1970
2020
1920
1850
1760 | 1670
1640
1580
1540
1540 | 1350
1360
1370
1320
1310 | 1010
930
1040
1010
986 | | 16
17
18
19
20 | 2240
1950
1890
1940
1860 | 1150
1160
1210
1230
1200 | 1000
1000
1000
1000
1000 | 980
980
970
970
970 | 910
910
900
900
900 | 800
820
850
900
900 | 8690
8860
7310
6800
5580 | 3600
4370
4660
5480
5280 | 1670
1600
1550
1520
1520 | 1480
1 6 60
3160
2800
2330 | 1320
1230
1170
1180
1180 | 962
992
1050
989
985 | | 21
22
23
24
25 | 1750
1650
1550
1440
1400 | 910
916
987
1150
1300 | 1000
1000
1000
1000
1000 | 970
970
970
970
970 | 890
890
890
880
880 | 900
900
900
900
900 | 5060
4620
4330
4000
3700 | 4880
4420
4000
3550
3270 | 1490
1490
1460
1450
1430 | 2410
3080
2840
2470
2200 | 1180
1170
1230
1130
1140 | 984
988
987
955
944 | | 26
27
28
29
30
31 | 1360
1330
1310
1300
1310
1310 | 1210
1120
1030
954
875 | 1000
1000
1000
1000
1000 | 970
970
970
970
970
960 | 880
870
870
 | 920
940
980
1150
2000
3500 | 3380
3140
2940
2610
2380 | 3070
2860
2730
2610
2480
2400 | 1380
1390
1400
1470
1460 | 2240
2340
2170
2030
2020
2030 | 1110
1110
1070
1060
1030
995 | 1000
964
1010
1080
1060 | | | 54812
1768
3250
932
108700 | 33922
1131
1300
875
67280 | 29931
966
1070
688
59370 | 30460
983
1000
960
60420 | 25600
914
960
870
50780 | 30780
993
3500
800
61050 | 136210
4540
8860
2380
270200 | 107140
3456
5480
1960
212500 | 51350
1712
2300
1380
101900 | 62210
2007
3160
1380
123400 | 41995
1355
2020
995
83300 | 29768
992
1080
923
59040 | CAL YR 1981 TOTAL 284619 MEAN 780 MAX 6560 MIN 114 AC-FT 564500 WTR YR 1982 TOTAL 634178 MEAN 1737 MAX 8860 MIN 688 AC-FT 1258000 NOTE .-- No gage-height record Jan. 25 to Mar. 15. ### 05079000 RED LAKE RIVER AT CROOKSTON, MN--Continued (National stream-quality accounting network station) ### WATER-QUALITY RECORDS PERIOD OF RECORD. -- Water years 1962, 1974-76, 1979 to current year. PERIOD OF DAILY RECORD. -SPECIFIC CONDUCTANCE: October 1980 to September 1982. WATER TEMPERATURES: October 1980 to September 1982. INSTRUMENTATION. -- Water-quality minimonitor since October 1980. REMARKS.--Letter K indicates non-ideal colony count. Extremes are published for years with 80 percent or more daily record. Malfunctions of the monitor resulted in less than 80 percent recorded daily record for the current year. WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | | | - | • | SPE- | - | | | • | BARO- | | |------------------|--|---|---|---|---|--
---|---|--|---| | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS)
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS)
(00095) | CIFIC
CON-
DUCT-
ANCE
LAB
(UMHOS)
(90095) | PH
(STAND-
ARD
UNITS)
(00400) | PH
LAB
(STAND-
ARD
UNITS)
(00403) | TEMPER-
ATURE,
AIR
(DEG C)
(00020) | TEMPER-
ATURE
(DEG C)
(00010) | METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | TUR-
BID-
ITY
(NTU)
(00076) | | OCT
28
JAN | 0930 | 1310 | 428 | 438 | 8.6 | 8.2 | 10.0 | 3.0 | 738 | 8.4 | | 18 | 1515 | 973 | | 355 | | 7.9 | 8.0 | .0 | 733 | 34 | | MAR
16 | 1210 | 800 | 377 | 365 | 7.9 | 7.9 | 3.0 | .0 | 732 | 50 | | MAY
04 | 1355 | 2050 | 440 | 431 | 8.3 | 8.0 | 15.0 | 16.5 | 729 | 31 | | JUN
30⋅⋅⋅ | 1235 | 1430 | 355 | 358 | 8.6 | 7.9 | 23.0 | 19.5 | 742 | 25 | | AUG
24 | 1530 | 1130 | 350 | 328 | 8.3 | 8.2 | 21.0 | 21.5 | 735 | 17 | | DATE | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | STREP-
TOCOCCI
FECAL,
KF AGAR
(COLS.
PER
100 ML)
(31673) | HARD-
NESS
(MG/L
AS
CACO3)
(00900) | HARD-
NESS
NONCAR-
BONATE
(MG/L
AS
CACO3)
(95902) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM AD- SORP- TION RATIO (00931) | | OCT
28 | | | K80 | 960 | 233 | 33 | 57 | 22 | 6.6 | .2 | | JAN
18 | 10.6 | 75 | 42 | 91 | 183 | 3.0 | 47 | 16 | 4.4 | •1 | | MAR
16 | 13.2 | 94 | K52 | 750 | 190 | •00 | 48 | 17 | 4.8 | .2 | | MAY
04 | 9.5 | 102 | K27 | 2800 | 228 | 58 | 60 | 19 | 4.3 | .1 | | JUN
30 | | | 130 | 960 | 178 | 14 | 45 | 16 | 4.3 | .1 | | AUG
24 | 7.9 | 93 | | 150 | 172 | 11 | 44 | 15 | 3.8 | .1 | | | | ,,, | | | | | | | | | | DA | POT
SI
DI
SOL
(MG
TE AS | UM, LINI S- LA VED (MG /L AS K) CAC | TY SULF
B DIS
/L SOL
(MG
O3) AS S | - DIS
VED SOL
/L (MG
O4) AS | DE, RIE
NVED SOL
/L (MG
CL) AS | DE, DIS
S- SOL
VED (MG
/L AS
F) SIC | S- AT 1 VED DEG //L DI SOL (MG | DUÉ SUM
80 CONS
6. C TUEN
S- DI
VED SOI
6/L) (MG | OF SOLI
STI- DI
STS, SOL
SS- (TO
VED PE
E/L) DA | S-
VED
NS
R
Y) | | OCT
28 | | 2.4 20 | 0 h | 2 | 4.5 | •1 | 5.9 | 292 | 261 1 | 030 | | JAN | | 2.4 18 | | 1 | 4.2 | .1 | 3.3 | 243 | 197 | 638 | | MAR | | 2.8 19 | | 3 | 3.3 | .1 | 3.5 | 236 | 207 | 510 | | MAY | | 4.5 17 | | 9 | 4.6 | .1 | 4.6 | 227 | | 260 | | JUN | | 2.4 16 | _ | 0 | 2.5 | •2 | 3.0 | 232 | 192 | 896 | | AUG | | 2.3 16 | 1 1 | 8 | 2.8 | .1 | 4.1 | 219 | 187 | 668 | ### 05079000 RED LAKE RIVER AT CROOKSTON, MN--Continued | DA | A TE | NITE
GEN
NO2+N
DIS
SOLV
(MG/
AS N | I,
IO3 AM
S-
VED S
'L I | VITRO-
GEN,
MMONIA
DIS-
SOLVED
(MG/L
AS N)
DO608) | NIT
GEN,
MONI
ORGA
TOT
(MG
AS | AM-
A +
NIC
AL
/L
N) | PHO
PHOR
TOT
(MG
AS | US,
AL
/L
P) | | US,
S-
VED
/L
P) | PHO
PHOR
ORT
DIS
SOLV
(MG/
AS P | US,
HO,
ED
L | SED
MEN'
SUS
PEN
(MG | r,
-
DED
/L) | SED
MENT
DI
CHAR
SU
PEN
(T/D)
(801 | T,
S-
GE,
S-
DED
AY) | SIE | SP.
VE
AM.
NER
AN
MM | |------------------|--|---|---|--|---|-------------------------------------|----------------------------------|--------------------------|--|------------------------------|---|-------------------------------|---|-------------------------------|---|-------------------------------------|--------------------------------|--| | OCT
28 | r
8 | | .20 | .060 | 1 | .10 | | 040 | | 0 20 | <. | 010 | | 50 | | 178 | | 96 | | JAN
18 | N
B | | .09 | .090 | | .62 | | 030 | | .020 | | 010 | | | | | | | | | 6 | | .15 | .180 | | •99 | | 070 | | 040 | | 0 20 | | 34 | | 73 | | 93 | | | 4 | <. | 10 | .080 | | .80 | | 170 | | 050 | <. | 010 | | 84 | | 465 | | 94 | | JUN
30
AUG | 0 | ٠. | 10 | .030 | | .80 | | 110 | | 070 | | 0 20 | | 65 | | 251 | | 97 | | | 4 | <. | 10 | <.010 | 1 | .00 | • | 060 | • | 0 20 | • | 010 | | | 1 | | | | | DATE | TI | ME | ARSENI
TOTAL
(UG/I
AS AS
(01002 | IC II
L SC
L (U
S) AS | ENIC
IS-
LVED
G/L
AS) | ERA
(UC | COV-
ABLE
I/L
BA) | DI:
SOL'
(Ud
AS | | TO
RE
ER
(U
AS | MIUM
TAL
COV-
ABLE
G/L
CD)
027) | SO
(U
AS | MIUM
IS-
LVED
G/L
CD)
025) | MIC
TO
REC
ER
(UC | CAL
COV-
ABLE
E/L
CR) | (UC | M,
S-
LVED
H/L
CR) | COBALT,
TOTAL
RECOV-
ERABLE
(UG/L
AS CO)
(01037) | | OCT 28 | na | 30 | | 3 | 2 | | 100 | | 60 | | <1 | | <1 | | 20 | | 10 | <1 | | JAN
18 | | 15 | | 2 | 1 | | 100 | | 57 | | | | <1 | | | | <10 | | | MAY
04 | | 55 | | 3 | 3 | (| (100 | | 56 | | <1 | | <1 | | 30 | | 30 | 1 | | AUG
24 | | 30 | | 3 | 3 | | 100 | | 58 | | 1 | | <1 | | 10 | | 10 | 7 | | DATE | COBA
DIS
SOLV
(UG
AS
(010 | LT,
-
ED
/L
CO) | COPPER
TOTAL
RECOV
ERABL
(UG/I
AS CU
(01042 | COF
COF
DI
LE SO
(U
J) AS | PPER,
S-
LVED
G/L
CU)
040) | ERA
(UG | CAL
COV-
BLE
I/L
FE) | D)
SO)
(U)
AS | ON,
IS-
LVED
G/L
FE)
O46) | TO
RE
ER
(U
AS | AD,
TAL
COV-
ABLE
G/L
PB) | SO
(U
AS | AD,
IS-
LVED
G/L
PB)
049) | NES
TO
REC
ER/ | CAL
COV-
ABLE
B/L
MN) | NES
DI
SOL
(UG | S-
VED
/L
MN) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG)
(71900) | | OCT
28
JAN | | <1 | | 6 | 2 | | 360 | | 29 | | 3 | | 1 | 1 | 40 | | 15 | -7 | | 18
MAY | | <1 | - | | 3 | | 370 | | 23 | | | | <1 | ı | 20 | | 7 | •1 | | 04
AUG | | <1 | | 6 | 2 | 1 | 200 | | 41 | | 5 | | 5 | | 100 | | 17 | <.1 | | 24 | | 2 | | 5 | 4 | | 590 | | 15 | | 3 | | 2 | | 90 | | 9 | <.1 | | ост
28 | ATE
P | MERCU
DIS
SOLV
(UG/
AS H
(7189 | RY 1
 - F
 ED E
 L (G) A | CCKEL,
POTAL
RECOV-
PRABLE
(UG/L
AS NI)
01067) | NICK
DIS
SOL
(UG
AS | VED
/L
NI) | SEL
NIU
TOT
(UG,
AS | M,
AL
/L
SE) | SOL
(UG | M,
S-
VED
/L
SE) | SILVI
TOT
RECC
ERA
(UG,
AS | AL
OV-
BLE
/L
AG) | (UG, | S-
VED
/L
AG) | ZING
TOT
RECG
ERAI
(UG,
AS | AĹ
OV-
BLE
/L
ZN) | ZIN
DI
SOL
(UG,
AS | S-
VED
/L
ZN) | | | 3 | | .1 | | | 2 | | <1 | | <1 | | <1 | | <1 | | 100 | | 78 | | | ٠ | < | .1 | 5 | | 2 | | <1 | | <1 | | <1 | | <1 | | 30 | | 6 | | AUG
24 | }
† • • • | < | .1 | 5 | | 2 | | <1 | | <1 | | <1 | | <1 | 1 | 40 | | 4 | ### 05079000 RED LAKE RIVER AT CROOKSTON, MN--Continued SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | DAY | MAX | MIN | MEAN | |---|---|---|--|--|---|--|---|---|---|--|--|--| | | | FEBRUARY | 7. | | MARCH | | | APRIL | ı | | MAY | | | 1
2
3
4
5 | | | | | | | 272
260
265
271
294 | 255
252
256
262
271 | 264
255
260
265
281 | 442
443
440
440
435 | 435
440
433
433
399 | 437
442
436
435
417 | | 6
7
8
9
10 | | | | | | | 311
321
329
335
333 | 295
312
322
329
320 | 302
317
326
332
327 | 432
457
457
451
443 | 397
433
451
443
432 | 414
448
454
447
436 | | 11
12
13
14
15 | | | | | | | 320
308
301
296
273 | 307
293
295
260
267 | 314
302
298
279
270 | 432
443
461
461
455
| 428
426
443
455
447 | 429
430
454
458
451 | | 16
17
18
19
20 | | | | 365
366
358
344
335 | 364
356
339
331
325 | 364
359
345
334
327 | 287
312
316
316 | 274
293
312
309 | 280
297
315
313 | 454
484
491
495
486 | 446
454
486
486
462 | 448
469
488
493
475 | | 21
22
23
24
25 | | | | 341
344
354
361
359 | 329
340
343
352
354 | 335
342
349
355
356 | | | | 461
439
418
404
399 | 439
420
406
397
393 | 450
429
411
400
395 | | 26
27
28
29
30
31 | | | | 360
365
365
356
303
273 | 356
359
355
304
272
265 | 358
361
360
334
286
268 | 433 |

422 | 428 | 393
385
382
380
377
370 | 385
377
380
377
370
366 | 389
381
381
378
373
368 | | MONTH | | | | | | | | | | 495 | 366 | 430 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN | MEAN | MAX | MIN
AUGUST | | MAX | MIN
SEPTEME | | | DAY 1 2 3 4 5 | 368
370
371
371
370 | | MEAN 367 368 370 370 368 | 385
 | | MEAN 374 | MAX
423
422
420
417
410 | | | MAX | | | | 1
2
3
4 | 368
370
371 | JUNE
364
366
368
368 | 367
368
370
370 | 385

 | JULY
360
 | 374 | 423
422
420
417 | AUGUST
400
391
388
382 | 407
405
397
403 | MAX | | | | 1
2
3
4
5 | 368
370
371
371
370
371
368 | JUNE 364 366 368 367 367 | 367
368
370
370
368
370
366 | 385

450
446
460 | JULY 360 417 432 446 | 374

422
439
454 | 423
422
420
417
410
388
386
381
382 | AUGUST
400
391
388
382
381
374
377 | 407
405
397
403
395
380
381 | MAX | | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 368
370
371
371
370
371
368
364
364
364
377
386
395
403 | JUNE 364 366 368 367 367 364 362 361 363 377 386 395 | 367
368
370
370
368
370
366
363
363
362
368
382
389 | 385

450
446
460
457
451
460
458
458 | JULY 360 417 432 446 422 420 426 446 | 374

422
439
454
450
446
453
451
448 | 423
422
420
417
410
388
386
381
382
378
372
380
368
368 | 400
391
388
382
381
374
377
372
366
362
363
358
360
356 | 407
405
397
403
395
380
381
376
373
368
365
365
359 | MAX | | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 368
370
371
371
370
371
368
364
364
364
377
385
404
403
398
404 | JUNE 364 366 368 368 367 367 364 362 361 363 377 386 395 402 395 3884 | 367
368
370
368
370
368
376
363
363
362
368
389
403
399
403
397
3886
382 | 385

450
446
460
457
451
460
458
458
458
457
461
461
473
440 | JULY 360 417 432 446 422 420 426 446 422 418 418 415 415 | 374

429
459
451
451
451
451
451
448
451
448
451
449
429 | 423
422
420
417
410
388
386
381
378
378
378
368
368
369
359
358
357
366
366 | 400
391
388
382
381
377
372
366
362
363
356
356
350
356
350 | 407
405
397
405
397
395
380
381
376
376
365
365
365
359
354
3540
355 | MAX | | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 368
370
371
371
370
371
368
364
364
377
385
403
403
403
3985
3885
3885
3885
3885
3885
3885
388 | JUNE 364 368 368 367 367 364 362 361 363 377 386 395 402 395 381 378 377 376 377 376 | 367
368
370
368
370
368
376
363
363
368
389
403
399
403
3882
3882
3882
3882
3882
3882
3882
38 | 385

450
4460
457
451
460
457
461
458
457
461
473
447
450
447 | JULY 360 417 432 446 422 420 426 446 422 418 415 417 406 418 417 406 418 | 374

422
439
450
4451
4451
4451
4451
4451
4451
4451 | 423
422
420
417
410
388
386
381
382
378
368
368
369
359
366
359
360
3559 | 400
391
388
382
381
377
3766
362
358
360
356
350
351
350
350
350
350
350
350
350 | 407
405
397
405
397
395
380
381
3763
368
365
365
3555
3555
3555
3559
3559 | MAX | | | ### 05079000 RED LAKE RIVER AT CROOKSTON, MN--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | DAY | MAX | MIN | MEAN | |---|--|--|--|--|---|--|--|--|--|--|--|--| | | | FEBRUAR | Y | | MARCH | | | APRII | .i | | MAY | | | 1
2
3
4
5 | | | | | | | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | 16.0
17.5
18.0
18.0
17.5 | 14.0
15.5
17.5
17.5
16.0 | 15.0
16.5
18.0
18.0
16.5 | | 6
7
8
9 | | | | | | | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | 15.5
14.0
13.5
13.0
12.0 | 14.5
13.0
12.0
12.0
11.5 | 15.0
13.5
13.0
12.5
11.5 | | 11
12
13
14
15 | | | | | | | .0
.0
.0
2.0
2.5 | .0
.0
.0
.0 | .0
.0
.0
.5
2.0 | 12.0
12.0
12.5
13.0
15.0 | 11.5
11.5
12.0
12.5
13.0 | 11.5
12.0
12.0
13.0
14.0 | | 16
17
18
19
20 | | | | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | 5.0
6.0
8.5
8.5
9.5 | 3.0
5.0
8.0
7.0
7.0 | 4.0
5.5
8.5
7.5
8.5 | 17.0
17.0
17.0
16.0
16.0 | 15.0
16.5
16.0
15.5
15.0 | 16.0
16.5
17.0
16.0
15.5 | | 21
22
23
24
25 | | | | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | 10.0
11.0
12.0
13.0 | 8.0
9.0
10.5
12.5
11.0 | 9.5
10.5
11.5
12.5
12.0 | 16.0
16.5
18.0
18.5
19.5 | 15.5
15.0
16.0
17.5
18.0 | 15.5
16.0
17.0
18.0
18.5 | | 26
27
28
29
30
31 | | | | .0
.0
.0
.0 | .0
.0
.0
.0 | .0
.0
.0 | 13.0
13.5
13.5
13.5
15.0 | 11.5
12.0
12.0
12.0
13.0 | 12:0
12:5
12:5
12:5
13:5 | 20.5
22.0
22.5
22.5
22.5
19.5 | 18.5
19.5
20.5
21.5
20.0
17.0 | 19.5
20.5
21.5
22.0
21.0
18.0 | | MONTH | | | | | | | 15.0 | .0 | 5.0 | 22.5 | 11.5 | 16.0 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | MAX | JULY
MIN | MEAN | MAX | MIN
AUGUS | | MAX | MIN
SEPTEME | | | DAY 1 2 3 4 5 | MAX
17.0
17.0
18.0
17.5
18.0 | | MEAN 16.0 16.0 17.0 17.0 | MAX
23.0
23.5
24.0
24.0 | | MEAN 21.5 22.5 22.0 22.5 23.0 | MAX
25.5
26.0
26.5
27.0
27.5 | | | 18.5
18.5
19.0
19.0 | | | | 1
2
3
4 | 17.0
17.0
18.0
17.5 | JUNE
16.0
15.0
16.0
16.0 | 16.0
16.0
17.0
17.0 | 23.0
23.0
23.5
24.0 | JULY
20.0
22.0
20.0
20.0 | 21.5
22.5
22.0
22.5 | 25.5
26.0
26.5
27.0 | AUGUS
20.0
20.0
21.0
25.0 | 23.0
23.0
24.5
25.5 | 18.5
18.5
19.0
19.0 | SEPTEME
17.0
17.0
17.0
15.0 | 17.5
17.5
17.5
17.5 | | 1
2
3
4
5
6
7
8 | 17.0
17.0
18.0
17.5
18.0
17.5
16.5
15.0
14.5 | JUNE 16.0 15.0 16.0 16.5 16.5 14.0 13.5 | 16.0
16.0
17.0
17.0
17.0
17.0
14.0 | 23.0
23.5
24.0
24.0
24.0
24.0
23.5 | JULY 20.0 22.0 20.0 20.0 20.0 20.0 20.0 20. | 21.5
22.5
22.0
22.5
23.0
23.0
23.0
23.0 |
25.5
26.0
26.5
27.5
27.5
27.5
27.5
23.0 | 20.0
20.0
21.0
25.0
25.0
25.0
20.0
20.0 | 23.0
23.0
24.5
25.5
26.0
26.5
26.5
22.5
21.0 | 18.5
18.5
19.0
19.0
19.0
19.0
20.0 | 17.0
17.0
17.0
15.0
15.0
15.0
15.0
20.0 | 17.5
17.5
17.5
17.5
17.5
17.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 17.0
17.0
18.0
17.5
18.0
17.5
15.0
14.5
15.5
18.0
19.0
20.5
21.5 | JUNE 16.0 15.0 16.0 16.5 16.5 13.5 13.0 15.0 16.5 17.5 | 16.0
16.0
17.0
17.0
17.0
17.0
14.5
14.0
14.5
17.5
19.0
20.5 | 23.0
23.0
23.0
24.0
24.0
24.0
24.0
23.5
22.5
26.0
25.5 | JULY 20.0 22.0 20.0 20.0 20.0 20.0 20.0 20. | 21.5
22.5
22.0
22.5
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0 | 25.5
26.0
26.5
27.0
27.5
27.5
27.0
26.5
23.0
21.5
22.0
23.0 | 20.0
20.0
21.0
25.0
25.0
25.0
20.0
20.0
20.0
20.0
20 | 23.0
23.0
24.5
25.5
26.0
26.5
22.5
21.0
19.5 | 18.5
18.5
19.0
19.0
19.0
18.5
20.0
21.5
23.0
21.0
18.5
16.0 | SEPTEME 17.0 17.0 17.0 15.0 15.0 15.0 20.0 20.5 20.5 | 17.5
17.5
17.5
17.5
17.5
17.5
17.5
20.5
21.5
18.5
17.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 17.0
17.0
18.0
17.5
18.0
17.5
16.5
15.0
14.5
15.5
18.0
19.0
20.5
21.5
21.5
21.0
20.5
21.5 | JUNE 16.0 15.0 16.0 16.5 16.5 14.0 13.5 13.0 15.5 19.5 20.0 19.5 19.5 17.5 | 16.0
16.0
17.0
17.0
17.0
17.0
14.5
14.5
14.0
14.5
20.5
20.5
20.5 | 23.0
23.5
24.0
24.0
24.0
24.0
23.5
26.0
26.5
26.0
25.0
26.5
26.0
27.0
28.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29 | JULY 20.0 22.0 20.0 20.0 20.0 20.0 20.0 20. | 21.5
22.5
22.5
22.5
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0 | 25.5
26.0
26.5
27.5
27.5
27.0
26.5
23.0
21.5
22.0
23.0
23.0
23.5 | 20.0
20.0
21.0
25.0
25.0
25.0
20.0
20.0
20.0
20.0
20 | 23.0
23.0
24.5
25.5
26.0
26.5
22.5
21.0
19.5
21.0
22.5
21.0
22.5
23.0
22.5
22.5
22.5
22.5
22.5
22.5
22.5
22 | 18.5
18.5
19.0
19.0
19.0
18.5
20.0
21.5
23.0
21.0
18.5
16.0
10.5 | SEPTEME 17.0 17.0 17.0 15.0 15.0 15.0 20.0 20.5 20.5 10.5 10.0 10.0 12.0 | 17.5
17.5
17.5
17.5
17.5
17.5
17.5
20.5
21.5
21.5
21.5
18.5
17.0
14.0
10.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 17.0
17.0
17.5
18.0
17.5
16.5
15.5
15.5
18.0
20.5
21.5
21.5
21.5
21.0
20.0
20.0
20.5
21.5 | JUNE 16.0 15.0 16.0 16.5 15.5 14.0 13.0 15.5 17.5 19.5 17.5 17.5 17.5 17.5 18.5 19.5 | 16.0
16.0
17.0
17.0
17.0
17.0
14.5
14.5
14.0
14.5
19.0
20.5
20.5
20.5
19.5
18.5
18.5
18.5 | 23.0
23.5
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0 | JULY 20.0 22.0 20.0 20.0 20.0 20.0 22.0 22. | 21.5
22.5
22.5
22.0
23.0
23.0
23.0
23.0
23.0
23.0
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5 | 25.5
26.0
26.5
27.0
27.5
27.0
26.5
23.0
21.5
22.0
23.0
23.0
23.0
25.5
26.5
26.5
26.5 | 20.0
20.0
21.0
25.0
25.0
20.0
20.0
20.0
20.0
20.0
22.0
20.0
22.0
20.0
22.0
20.0
22.0
20.0 | 23.0
23.0
24.5
25.5
26.0
26.5
22.5
21.0
19.5
21.0
20.5
21.0
22.5
23.0
22.5
22.5
22.5
22.5
23.0
22.5
22.5
22.5
22.5
23.0 | 18.5
18.5
19.0
19.0
19.0
19.0
21.5
23.0
23.0
21.0
18.5
16.0
10.5
14.0
13.0
12.5
14.0
13.0 | SEPTEME 17.0 17.0 17.0 15.0 15.0 15.0 20.0 20.5 10.0 10.0 10.0 12.0 11.5 10.0 11.5 10.0 11.5 10.0 11.5 10.0 11.5 10.0 | 17.5
17.5
17.5
17.5
17.5
17.5
17.5
21.5
21.5
21.5
21.5
21.5
18.5
17.0
14.0
10.0
12.5
13.0
12.0
12.0
12.5
13.0 | ### 05082500 RED RIVER OF THE NORTH AT GRAND FORKS, ND LOCATION.--Lat 47°56'34", long 97°03'10", in SW\nE\ sec.33, T.152 N., R.50 W., Grand Forks County, Hydrologic Unit 09020301, on left bank on second floor of old sewage plant in Grand Forks, 2.3 mi (3.7 km) downstream from Red Lake River, and at mile 295.7 (475.8 km). DRAINAGE AREA.--30,100 mi² (78,000 km²), approximately, including 3,800 mi² (9,840 km²) in closed basins. ### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- April 1882 to current year. Monthly discharge only prior to May 1901, published in WSP 1308. REVISED RECORDS.--WSP 855: 1936(M). WSP 1115: 1942. WSP 1175: 1897(M). WSP 1388: 1904, 1914-15, 1917-19, 1921-22, 1927, 1950. WSP 1728: Drainage area. WRD-ND-81-1: 1882, 1897 (M). GAGE.--Water-stage recorder. Datum of gage is 778.35 ft (237.241 m) National Geodetic Vertical Datum of 1929. Nov. 3, 1933, to Apr. 13, 1965, water-stage recorder 0.3 mi (0.5 km) upstream at present datum. See WSP 1728 or 1913 for history of changes prior to Nov. 3, 1933. REMARKS. Records good. WTR YR 1982 TOTAL 1310504 MEAN 3590 AVERAGE DISCHARGE.--100 years, 2,546 ft 3 /s (72.10 m 3 /s) 1,845,000 acre-ft/yr (2.27 km 3 /yr). EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, about 85,000 ft³/s (2,410 m³/s) Apr. 10, 1897, gage height, 50.2 ft (15,30 m), site and datum then in use, from rating curve extended above 54,000 ft³/s (1,530 m³/s); minimum, 1.8 ft³/s (0.051 m³/s) Sept. 2, 1977, caused by unusual regulation during repair of dam at Grand Forks. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 23,900 ft 3 /s (677 m 3 /s) Apr. 12, gage height, 37.18 ft (11.332 m); minimum daily, 884 ft 3 /s (25.0 m 3 /s) Oct. 1. | | | DISCHA | RGE, IN CU | JBIC FEET | PER SECO | ND, WATEI
MEAN VAL | R YEAR OCT
UES | OBER 1981 | TO SEPTE | MBER 1982 | | | |--------------------------------------|--|---|--|--|---------------------------------------|--|---|--|--|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 884
960
1370
1920
2040 | 2170
2110
2060
1990
1900 | 1470
1380
1290
1200
1190 | 1200
1200
1200
1200
1200 | 990
990
990
990 | 1290
1280
1250
1250
1250 | 11400
13600
15600
17400
18500 | 5960
5490
5090
4840
5060 | 4810
4660
4450
4200
4020 | 2430
2500
2530
2460
2490 | 2860
2810
2720
2610
2470 | 1350
1330
1320
1300
1290 | | 6
7
8
9
10 | 1890
1890
2300
2590
2550 | 1830
1800
1800
1840
1920 | 1080
1040
1120
1110
1050 | 1190
1180
1170
1160 | 990
990
1000
1000 | 1250
1260
1290
1320
1300 | 18800
19000
19800
20800
21000 | 6460
7350
6800
5680
4900 | 3900
3790
3710
3800
3790 | 2530
2820
3070
3100
3010 | 2410
2350
2250
2180
2080 | 1280
1270
1250
1240
1190 | | 11
12
13
14
15 | 2480
2550
2640
3040
3840 | 1950
1950
1950
1950
1990 | 1040
1060
1080
1150
1170 | 1160
1150
1150
1150
1140 | 1000
1010
1020
1030
1040 | 1290
1280
1290
1320
1360 | 23100
23600
23900
23800
23700 | 4600
4500
4800
5150
5210 | 3750
3730
3700
3600
3450 | 29 20
29 60
29 20
28 30
28 40 | 2000
1980
1900
1880
1870 | 1200
1220
1240
1250
1270 | | 16
17
18
19
20 | 3970
3570
3140
2870
2890 | 2000
2010
2030
2060
2050 | 1110
1090
1080
1100 | 1140
1120
1100
1100
1140 | 1050
1060
1080
1100
1120 | 1380
1450
1540
1700
2000 | 23600
23400
23200
22700
21600 | 5400
5810
6520
7200
7850 | 3300
3160
3010
2910
2840 | 2790
2710
2700
3630
4080 | 1860
1830
1740
1690
1650 | 1260
1270
1260
1320
1310 | | 21
22
23
24
25 | 2910
2840
2730
2650
2550 | 1790
1510
1250
1380
1650 | 1100
1100
1100
1100
1100 | 1140
1150
1150
1150
1120 | 1140
1160
1180
1200
1200 | 2260
2610
3010
3300
3450 | 19700
16700
14000
12100
10700 | 8100
8050
7820
7460
6910 | 2780
2730
2690
2680
2610 | 4090
4040
4470
4580
4230 | 1570
1500
1440
1440
1350 | 1270
1250
1240
1270
1240 | | 26
27
28
29
30
31 | 2410
2340
2280
2230
2170
2170 | 1700
1650
1400
1400
1500 | 1100
1100
1100
1100
1100 | 1100
1080
1070
1020
1020 | 1210
1210
1250
 | 3650
3900
4150
4690
6280
9120 | 9660
8860
8060
7290
6540 | 6420
6000
5650
5350
5110
4930 | 2550
2520
2520
2490
2450 | 3860
3620
3570
3390
3120
2920 | 1290
1350
1430
1470
1440
1410 | 1220
1250
1290
1290
1290 | |
TOTAL
MEAN
MAX
MIN
AC-FT | 76664
2473
3970
884
152100 | 54590
1820
2170
1250
108300 | 35010
1129
1470
1040
69440 | 35230
1136
1200
1020
69880 | 29990
1071
1250
990
59490 | 73770
2380
9120
1250
146300 | 522110
17400
23900
6540
1036000 | 186470
6015
8100
4500
369900 | 100600
3353
4810
2450
199500 | 99210
3200
4580
2430
196800 | 58830
1898
2860
1290
116700 | 38030
1268
1350
1190
75430 | MAX 23900 MIN 884 AC-FT 2599000 # 05082500 RED RIVER OF THE NORTH AT GRAND FORKS, ND--Continued WATER-QUALITY RECORDS PERIOD OF RECORD. -- Water years 1949 to current year. | DATE | Т | IME | FLO
INS
TAN
(C | EAM-
OW,
TAN-
EOUS
FS)
061) | CI
CO
DU
AN
(UM | E-
FIC
N-
CT-
CE
HOS) | (ST
A
UNI | H
AND-
RD
TS)
400) | AT
A
(DE | PER-
URE,
IR
G C)
020) | AT
(DE | PER-
URE
G C)
010) | NE
(M
A
CA | G/L | NE
NON
BON
(M
A
CAC | CAR-
ATE
G/L
S | DI
SO:
(M
AS | CIUM
S-
LVED
G/L
CA)
915) | MAG
SI
DI
SOL
(MG
AS | UM,
S-
VED
/L
MG) | |------------------|-----------------------|--|-------------------------|---|--------------------------------------|--|--------------------------------------|---|------------------------------|--|------------------------------------|---|------------------------------------|---|------------------------------------|---|-------------------------------|--|--|-------------------------------| | APR
23 | 1 | 0 25 | 1 | 4 20 0 | | 460 | | 7.7 | | 20.0 | | 9.5 | | 205 | 4 | 7 | | 49 | 2 | 20 | | AUG
25
25 | | 250
251 | | 1300
1300 | | 364
364 | | 8.4 | | 12.0 | | 22.0 | | 188
188 | 1
2 | | | 44
47 | | .9
7 | | 27 | 1 | 1,7 | | 1300 | | 304 | | 0.4 | | | | 22.0 | | 100 | | O | | • 1 | 1 | ' | | DATE | DI
SOL
(M
AS | | SO
T | DIUM
AD-
RP-
ION
TIO
931) | S
D
SO
(M
AS | TAS-
IUM,
IS-
LVED
G/L
K)
935) | BON
FET
(M
A
HC | CAR-
ATE,
-LAB
G/L
S
O3)
440) | FET
(M | R-
ATE,
-LAB
G/L
AS
O3)
445) | LINI
L
(M)
A
CA | AB
G/L | DIO:
D
SO:
(M
AS | RBON
XIDE
IS-
LVED
G/L
CO2)
405) | DI
SO
(M
AS | FATE
S-
LVED
G/L
SO4)
945) | RII
DI
SO:
(M
AS | LO-
DE,
S-
LVED
3/L
CL)
940) | FLU
RID
DI
SOL
(MG
AS
(009 | E,
S-
VED
/L
F) | | APR
23 | | 15 | | •5 | | 7.2 | 19 | 2 | | .00 | 1 | 58 | | 6.1 | | 67 | | 7.5 | | .2 | | AUG
25
25 | | 7.0
7.7 | | •2
•3 | | 3.8
3.1 | 21 | 3 | | .00 | | 70
68 | | 1.3
1.3 | | 23
26 | | 4.8
4.5 | | .2 | | DA
APR | TE | SILI
DIS
SOL
(MG
AS
SIO
(009 | VED
/L
2) | SOLI
RESI
AT 1
DEG
DI
SOL
(MG
(703 | DUÉ
80
. C
S-
VED
/L) | | OF
TI-
TS,
S-
VED
/L) | SOLI
DI
SOL
(TO
PE
DA
(703 | S-
VED
NS
R
Y) | NIT
GE
NITR
DI
SOL
(MG
AS | N,
ATE
S-
VED
/L
N) | NIT
GE
NO2+
DI
SOL
(MG
AS
(006 | N,
NO3
S-
VED
/L
N) | PHOS
PHORU
ORTH
DIS-
SOLVU
(MG/)
AS P | JS,
HO,
ED | ARSE
DI
SOL
(UG
AS
(010) | S-
VED
/L
AS) | BORG
DI:
SOL
(UG,
AS)
(010) | S-
VED
/L
3) | | | | • • • | 1 | 3 | | 306 | | 277 | 11 | 700 | | .70 | | | | .09 | | 2 | | 50 | | | | ••• | | 6.5
7.1 | | 231
235 | | 214
214 | | 811
825 | | .23 | < | .10 | | .06 | | 3 | | 80
40 | | | DA | | LITH DI SOL' (UG AS : | S-
VED
/L
LI) | IRO
DI
SOL
(UG
AS | S-
VED
/L
FE) | | S-
VED
/L
PB) | MAN
NES
DI
SOL
(UG
AS
(010 | E,
S-
VED
/L
MN) | MERC
DI
SOL
(UG
AS
(718 | S-
VED
/L
HG) | MOL
DEN
DI
SOL
(UG
AS
(010 | UM,
S-
VED
/L
MO) | SELI
NIUM
DIS
SOLV
(UG,
AS S | I,
S+
/ED
/L
SE) | | UM,
S-
VED
/L
SR) | ZING
DI:
SOL'
(UG;
AS : | S-
/ED
/L
ZN) | | | APR
23
AUG | | | 17 | | 60 | | 0 | | 0 | | •3 | | 1 | | 0 | | 120 | | | | | 25 | • • • | | 14
11 | | 20
6 | | 0
<1 | | 10
12 | | .3
<.1 | | 1
6 | | 0
<1 | | 100
110 | | 8 | | RED RIVER OF THE NORTH BASIN 05082500 RED RIVER OF THE NORTH AT GRAND FORKS, ND--Continued | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS)
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS)
(00095) | TEMPER-
ATURE
(DEG C)
(00010) | |-----------------------------------|--------------------------------------|--|--|--| | OCT
23
NOV | 1500 | 2690 | 620 | 4.0 | | 23
DEC | 1355 | 1220 | 588 | •0 | | 22 | 1200 | 1190 | 592 | .0 | | JAN
22 | 1055 | 1150 | 482 | .0 | | FEB 25 | 1300 | 1220 | 480 | .0 | | MAR
23 | 1645 | 3120 | 383 | .0 | | APR
05
08
13
23
26 | 1140
1420
1135
1025
1320 | 19600
19800
23700
14200
9680 | 312
323
340
460
460 | .0
.5
2.0
9.5
12.0 | | 03
10
18
24
JUN | 1240
1050
1000
1150 | 4860
4970
6440
7240 | 572
550
568
538 | 15.0
13.0
17.0
16.5 | | 07
24 | 1100
1045 | 3670
2660 | 540
481 | 17.0
20.0 | | JUL
26 | 1105 | 3780 | 498 | 25.0 | | AUG
25
25
SEP | 1250
1251 | 1300
1300 | 364
364 | 22.0
22.0 | | 24 | 1005 | 1320 | 355 | 12.0 | #### 05087500 MIDDLE RIVER AT ARGYLE, MN LOCATION.--Lat 48°20'25", long 96°48'58", in NElNWt sec.15, T.156 N., R.48 W., Marshall County, Hydrologic Unit 09020309, at upstream side of bridge on County Highway 4 in Argyle and 14 mi (22 km) upstream from mouth. Prior to June 29, 1982, at site 800 ft (240 m) downstream. DRAINAGE AREA. -- 265 mi² (686 km²). PERIOD OF RECORD. -- March to September 1945, October 1950 to September 1981. Monthly discharge only for some periods, published in WSP 1728. October 1981 to January 1982, operated as a high-flow partial-record station. February to September 1982. GAGE.--Non-recording gage. Datum of gage is 828.53 ft (252.536 m) National Geodetic Vertical Datum of 1929. Prior to Nov. 8, 1951, nonrecording gage and Nov. 8, 1951, to Sept. 18, 1952, water-stage recorder at site 800 ft (240 m) downstream at datum 1.0 ft (0.30 m) higher. Sept. 19, 1952, to June 28, 1982, recording gage at site 800 feet (240 m) downstream at present datum. REMARKS .-- Records good. AVERAGE DISCHARGE.--31 years (water years 1951-81), 41.2 ft 3 /s (1.167 m 3 /s), 29,850 acre-ft/yr (36.8 hm 3 /yr); median of yearly mean discharges, 37 ft 3 /s (1.05 m 3 /s), 26,800 acre-ft/yr (33 hm 3 /yr). EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 4,260 ft 3 /s (121 m 3 /s) July 3, 1975, gage height, 16.59 ft (5.057 m) present datum, site then in use; no flow at times in most years. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of April 1950 reached a stage of 15.25 ft (4.648 m) present datum, site then in use, from floodmarks, discharge, 2,790 ft³/s (79.0 m³/s). EXTREMES FOR CURRENT YEAR.—Maximum discharge, 711 ft³/s (20.1 m³/s) Apr. 18, gage height, 9.96 ft (3.036 m) present datum, site then in use; minimum daily (February to September), 0.26 ft³/s (0.007 m³/s) Sept. 11. ## DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--------------------------------------|-----|-----|-----|-----|-------------------|--------------------------------------|--|----------------------------------|-----------------------------------|--------------------------------------|------------------------------------|----------------------------------| | 1
2
3
4
5 | | | | | | 1.2
1.2
1.2
1.2 | 257
280
300
270
250 | 50
45
45
54 | 23·
20
18
15
14 | 10
8.4
8.4
6.9 | 17
37
33
31
28 | .75
.67
.55
.53 | | 6
7
8
9
10 | | | | | | 1.2
1.2
1.2
1.2
1.2 | 230
210
190
180
180 | 211
245
199
146
116 | 13
13
12
13
13 | 70
218
225
180
159 | 27
25
23
19
16 | .43
.43
.58
.50 | | 11
12
13
14
15 | | | | | | 1.2
1.2
1.3
1.4
2.5 | 180
250
338
450
600 | 95
84
80
75
74 | 14
20
35
34
31 | 88
67
56
45
43 | 13
13
11
9.1
8.4 | .26
.55
.34
.45 | | 16
17
18
19
20 | | | | | | 5.0
8.0
10
8.5 | 666
699
702
560
391 | 76
108
169
195
199 | 27
23
19
16
14 | 58
49
42
33
29 | 7.3
7.8
6.7
5.2
4.1 | •53
•53
•55
•50
•45 | | 21
22
23
24
25 | | | | | 1.2 | 12
12
9.5
8.0
7.0 | 290
225
1 7 6
143
117 | 174
143
114
92
76 | 12
10
10
9.4
8.6 | 28
24
22
21
19 | 3.9
2.8
2.4
1.9
1.6 | .41
.32
.30
.27
.34 | | 26
27
28
29
30
31 | | | | | 1.2
1.2
1.2 |
6.0
6.5
8.0
20
40
100 | 99
87
78
66
58 | 63
51
44
36
30
27 | 8.0
7.6
8.4
13
12 | 17
15
14
16
14
17 | 1.7
2.0
2.1
1.1
1.1 | .39
.87
.64
.75
.58 | | TOTAL
MEAN
MAX
MIN
AC-FT | | | | | | 290.1
9.36
100
1.2
575 | 8522
284
702
58
16900 | 3170
102
245
27
6290 | 486.0
16.2
35
7.6
964 | 1620.7
52.3
225
6.9
3210 | 363.19
11.7
37
.99
720 | 14.84
.49
.87
.26
29 | #### 05092000 RED RIVER OF THE NORTH AT DRAYTON, ND LOCATION.--Lat 48°34'20", long 97°08'50", in SEASEASEA sec.24, T.159 N., R.51 W., Pembina County, Hydrologic Unit 09020311, on downstream end of east pier of interstate highway bridge, 1.5 mi (2.4 km) northeast of Drayton, and at mile 206.7 (332.6 km). DRAINAGE AREA.--34,800 mi² (90,130 km²), approximately, includes 3,800 mi² (9,840 km²) in closed basins. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--April 1936 to June 1937, April 1941 to current year (fragmentary prior to April 1949). REVISED RECORDS.--WSP 1388: 1949-50. WSP 1728: Drainage area. GAGE.--Water-stage recorder and concrete control. Datum of gage is 755.00 ft (230.124 m) National Geodetic Vertical Datum of 1929 (Minnesota Department of Transportation benchmark). Prior to Nov. 30, 1954, nonrecording gage at site 1.5 mi (2.4 km) upstream at datum 1.59 ft (0.485 m) higher. REMARKS .-- Records good. Some regulation by reservoirs on tributaries. AVERAGE DISCHARGE.--33 years (1949-82), 3,778 ft 3 /s (107.0 m 3 /s), 2,737,000 acre-ft/yr (3.37 km 3 /yr); median of yearly mean discharges, 2,650 ft 3 /s (75.0 m 3 /s), 1,920,000 acre-ft/yr (2.4 km 3 /yr). EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 92,900 ft 3 /s (2,630 m 3 /s) Apr. 28, 1979, gage height, 43.66 ft (13.308 m); minimum observed, 7.7 ft 3 /s (0.22 m 3 /s) Oct. 16, 1936, gage height, 1.75 ft (0.533 m), former site and datum. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of April 1897 reached a stage of about 41 ft (12.5 m), at site and datum in use prior to Nov. 30, 1954. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 35,500 ft³/s (1,010 m³/s) Apr. 17, gage height, 36.78 ft (11.211 m); minimum daily, 912 ft³/s (25.8 m³/s) Feb. 4. | | | DISCHA | RGE, IN CU | BIC FEET | PER SECO | OND, WATE
MEAN VAI | R YEAR OCT
LUES | OBER 1981 | TO SEPTE | MBER 1982 | | | |----------------------------------|--|---|--|---|---------------------------------------|--|---|--|--|--|--|--| | DAY | OCT | VOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 931 | 2290 | 1570 | 1190 | 940 | 1220 | 9820 | 10100 | 5150 | 2680 | 4200 | 1460 | | 2 | 950 | 2290 | 1640 | 1210 | 940 | 1230 | 10400 | 8500 | 4950 | 2640 | 3900 | 1430 | | 3 | 960 | 2270 | 1660 | 1220 | 922 | 1250 | 15200 | 7200 | 4800 | 2660 | 3700 | 1390 | | 4 | 1070 | 2210 | 1550 | 1220 | 912 | 1280 | 17000 | 6350 | 4600 | 2690 | 3520 | 1360 | | 5 | 1450 | 2150 | 1440 | 1220 | 940 | 1280 | 16500 | 5850 | 4400 | 3200 | 3360 | 1340 | | 6 | 1870 | 2080 | 1300 | 1220 | 960 | 1250 | 20000 | 5700 | 4200 | 3940 | 3200 | 1320 | | 7 | 1980 | 1980 | 1210 | 1210 | 970 | 1280 | 21100 | 7000 | 4050 | 4520 | 3030 | 1280 | | 8 | 1960 | 1940 | 1100 | 1190 | 960 | 1280 | 22400 | 8420 | 3970 | 4900 | 2900 | 1240 | | 9 | 2060 | 1920 | 1050 | 1190 | 970 | 1280 | 24200 | 8880 | 3900 | 5020 | 2750 | 1230 | | 10 | 2380 | 1920 | 1100 | 1180 | 970 | 1280 | 25500 | 7820 | 3940 | 4900 | 2590 | 1240 | | 11 | 2560 | 1970 | 1100 | 1170 | 970 | 1280 | 26700 | 6820 | 4000 | 4560 | 2440 | 1220 | | 12 | 2640 | 2010 | 1050 | 1180 | 970 | 1290 | 28200 | 6250 | 4020 | 4140 | 2310 | 1210 | | 13 | 2600 | 2020 | 1050 | 1160 | 980 | 1290 | 31700 | 5830 | 4020 | 3860 | 2210 | 1210 | | 14 | 2600 | 2010 | 1050 | 1160 | 1000 | 1290 | 33700 | 5750 | 4040 | 3680 | 2150 | 1210 | | 15 | 2900 | 2020 | 1080 | 1160 | 1020 | 1290 | 34900 | 6000 | 4020 | 3520 | 2080 | 1210 | | 16 | 3680 | 2040 | 1150 | 1130 | 1040 | 1290 | 35400 | 6650 | 3920 | 3420 | 2060 | 1210 | | 17 | 4260 | 2040 | 1170 | 1110 | 1060 | 1290 | 35400 | 7750 | 3700 | 3380 | 2020 | 1210 | | 18 | 4200 | 2040 | 1140 | 1090 | 1080 | 1290 | 35200 | 8600 | 3590 | 3280 | 2010 | 1240 | | 19 | 3800 | 2040 | 1120 | 1060 | 1100 | 1290 | 31000 | 9500 | 3400 | 3180 | 1960 | 1230 | | 20 | 3460 | 2040 | 1100 | 1050 | 1140 | 1350 | 28900 | 10500 | 3300 | 3620 | 1880 | 1240 | | 21 | 3300 | 2040 | 1100 | 1060 | 1140 | 1470 | 27500 | 11400 | 3200 | 4440 | 1790 | 1250 | | 22 | 3300 | 2010 | 1100 | 1080 | 1150 | 1740 | 25900 | 11800 | 3160 | 4740 | 1740 | 1260 | | 23 | 3280 | 1780 | 1100 | 1070 | 1140 | 2040 | 24700 | 11400 | 3070 | 4720 | 1660 | 1230 | | 24 | 3140 | 1490 | 1100 | 1040 | 1110 | 2240 | 23400 | 10200 | 2990 | 5120 | 1570 | 1230 | | 25 | 3010 | 1340 | 1100 | 1050 | 1150 | 2660 | 22200 | 9000 | 2930 | 5660 | 1510 | 1230 | | 26
27
28
29
30
31 | 28 20
26 90
25 90
25 00
24 10
23 60 | 1360
1460
1480
1420
1440 | 1100
1100
1100
1100
1100
1150 | 1010
990
980
970
960
950 | 1170
1200
1240
 | 2800
3010
3300
3700
4750
7050 | 20700
18900
16700
14300
12100 | 7900
7150
6500
6050
5700
5400 | 2840
2750
2750
2750
2730 | 60 20
59 40
57 80
5560
51 80
4680 | 1460
1400
1360
1370
1450
1470 | 1220
1220
1250
1260
1260 | | TOTAL MEAN MAX MIN AC-FT | 79711
2571
4260
931
158100 | 57100
1903
2290
1340
113300 | 36780
1186
1660
1050
72950 | 34480
1112
1220
950
68390
N 4386 | 29144
1041
1240
912
57810 | 60340
1946
7050
1220
119700 | 709620
23650
35400
9820
1408000 | 241970
7805
11800
5400
479900 | 111140
3705
5150
2730
220400 | 131630
4246
6020
2640
261100 | 71050
2292
4200
1360
140900 | 37890
1263
1460
1210
75150 | | arn In | 1002 101 | rvn 1000 | HEA. | 4300 | PIAA | 22400 | LITIN ATS | AC-PI | 31/5000 | | | | ## 05092000 RED RIVER OF THE NORTH AT DRAYTON, ND--Continued ### WATER-QUALITY RECORDS PERIOD OF RECORD.--Water years 1972 to current year. | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS)
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS)
(00095) | PH
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE,
AIR
(DEG C)
(00020) | TEMPER-
ATURE
(DEG C)
(00010) | HARD-
NESS
(MG/L
AS
CACO3)
(00900) | HARD-
NESS
NONCAR-
BONATE
(MG/L
AS
CACO3)
(95902) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
AD-
SORP-
TION
RATIO | |------------------|--|--|--|--|--|--|--|--|--|---|--|---| | APR
22
AUG | 1615 | 24600 | 470 | 8.6 | 24.0 | 8.5 | 189 | 51 | 46 | 18 | 17 | .6 | | 30 | 1420 | 1640 | 492 | 8.5 | 13.5 | 18.0 | 211 | 28 | 53 | 19 | 27 | .8 | | DATE | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | BICAR-
BONATE,
FET-LAB
(MG/L
AS
HCO3)
(95440) | CAR-
BONATE,
FET-LAB
(MG/L
AS
CO3)
(95445) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3)
(90410) | CARBON
DIOXIDE
DIS-
SOLVED
(MG/L
AS CO2)
(00405) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY)
(70302) | | APR
22 | 7.5 | 168 | .00 | 138 | .7 | 61 | 18 | .2 | 13 | 303 | 269 | 20100 | | AUG
30 | 4.9 | 223 | •00 | 180 | 1.1 | 37 | 31 | .2 | 8.0 | 343 | 291 | 1520 | | DATE | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | PHOS-
PHORUS,
ORTHO,
DIS-
SOLVED
(MG/L
AS P
(00671) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS)
(01000) | BORON,
DIS-
SOLVED
(UG/L
AS B)
(01020) | LITHIUM DIS- SOLVED (UG/L AS LI) (01130) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | MERCURY
DIS-
SOLVED
(UG/L
AS HG)
(71890) | MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO)
(01060) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145)
| STRON-
TIUM,
DIS-
SOLVED
(UG/L
AS SR)
(01080) | | APR
22 | 1.20 | .16 | 2 | 50 | 16 | 60 | 0 | 0 | .6 | 2 | 3 | 120 | | AUG
30 | •23 | | 2 | 80 | 12 | 250 | 0 | 10 | .3 | 1 | 0 | 150 | | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS)
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS)
(00095) | TEMPER-
ATURE
(DEG C)
(00010) | | |----------------------------|--------------------------------------|--|--|--|-----| | NOV
13 | 1630 | 2030 | 690 | 4.5 | | | JAN
13 | 1255 | 1160 | 550 | •0 | - 1 | | FEB
02
MAR | 1330 | 936 | 530 | .0 | | | 23
APR | 1650 | 2100 | 300 | .0 | | | 14
19
22
26
29 | 1250
1335
1615
1255
1210 | 33700
31000
24600
20800
14400 | 395
402
4 7 0
518
520 | 2.0
6.0
8.5
11.0
10.0 | | | 07
10
13
18
25 | 1400
1230
1225
1515
1230 | 7010
7880
5830
8660
9000 | 615
482
640
570
673 | 14.0
13.5
14.0
15.0
17.5 | | | 08 | 12 1 0
1 12 5 | 3960
3060 | 632
615 | 16.0
20.0 | i | | JUL
13
AUG | 1500 | 3620 | 658 | 25.5 | | | 30 | 1420 | 1640 | 492 | 18.0 | | | | | | | | | # 05102500 RED RIVER OF THE NORTH AT EMERSON, MANITOBA (International gaging station) LOCATION.--Lat 49°00'30", long 97°12'40", in sec.2, T.1, R.2 E., on right bank 1,500 ft (460 m) downstream from Canadian National Railway bridge in Emerson, 0.8 mi (1.3 km) downstream from international boundary, 3.6 mi (5.8 km) downstream from Pembina River, and at mile 154.3 (248.3 km). DRAINAGE AREA.--40,200 mi² (104,100 km²), approximately, includes 3,800 mi² (9,840 km²) in closed basins. ### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- March to November 1902 (gage heights only), May 1912 to September 1929 (monthly discharge only, published in WSP 1308). October 1929 to current year. GAGE.--Water-stage recorder. Datum of gage is 700.00 ft (213.360 m) National Geodetic Vertical Datum of 1929, by Geodetic Survey of Canada. See WSP 1728 or 1913 for history of changes prior to Apr. 10, 1953. REMARKS.--Records good. Discharge partialy regulated by reservoirs on tributaries. CAL YR 1981 WTR YR 1982 TOTAL TOTAL 561264 MEAN 4372 1595756 COOPERATION. -- This station is one of the international gaging stations maintained by Canada under agreement with the United States. AVERAGE DISCHARGE.--70 years (water years 1913-82), 3,295 ft 3 /s (93.31 m 3 /s), 2,387,000 acre-ft/yr (2.94 km 3 /yr); median of yearly mean discharges, 2,630 ft 3 /s (74.5 m 3 /s), 1,910,000 acre-ft/yr (2.4 km 3 /yr). EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 95,500 $\rm ft^3/s$ (2,700 $\rm m^3/s$) May 13, 1950, gage height, 90.89 ft (27.703 m); maximum gage height, 91.19 ft (27.795 m) May 1, 1979; minimum observed discharge, 0.9 $\rm ft^3/s$ (0.025 $\rm m^3/s$) Feb. 6-8, 1937. EXTREMES FOR CURRENT YEAR.--Maximum daily discharge, 34,000 ft 3 /s (963 m 3 /s) Apr. 18; minimum daily, 975 ft 3 /s (27.6 m 3 /s) Feb. 7. | | | DISCHARG | BE, IN | CUBIC FEET | PER SECO | ND, WATER
MEAN VAL | | OBER 1981 | TO SEPTE | MBER 1982 | | | |----------------------------------|--|--------------------------------------|--------------------------------------|--|--------------------------|--|---|--|--------------------------------------|--|--|--------------------------------------| | DAY | OCT | NOA | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 938 | 2370 | 1280 | 1150 | 1030 | 1220 | 6130 | 14300 | 5820 | 2900 | 4320 | 1600 | | 2 | 911 | 2300 | 1180 | 1190 | 1010 | 1240 | 8140 | 12900 | 5510 | 2860 | 3950 | 1580 | | 3 | 911 | 2280 | 1090 | 1210 | 1010 | 1250 | 9640 | 10200 | 5260 | 2830 | 3710 | 1550 | | 4 | 918 | 2250 | 1040 | 1220 | 1000 | 1270 | 10700 | 8750 | 5050 | 2830 | 3540 | 1520 | | 5 | 1010 | 2220 | 1070 | 1220 | 994 | 1280 | 11900 | 7580 | 4810 | 3100 | 3410 | 1470 | | 6 | 1340 | 2190 | 1120 | 1220 | 980 | 1290 | 12900 | 6610 | 4700 | 4110 | 3330 | 1450 | | 7 | 1790 | 2130 | 1150 | 1220 | 975 | 1290 | 14000 | 6840 | 4610 | 4490 | 3170 | 1400 | | 8 | 1950 | 2030 | 1170 | 1210 | 982 | 1290 | 15100 | 7980 | 4780 | 4760 | 3030 | 1370 | | 9 | 1950 | 1980 | 1180 | 1190 | 993 | 1290 | 16000 | 8960 | 5430 | 4920 | 2940 | 1340 | | 10 | 2040 | 1950 | 1180 | 1190 | 996 | 1290 | 16700 | 9110 | 5260 | 4960 | 2830 | 1300 | | 11 | 2300 | 1940 | 1170 | 1180 | 1000 | 1300 | 17300 | 8650 | 5080 | 4790 | 2660 | 1290 | | 12 | 2530 | 1970 | 1150 | 1170 | 1010 | 1310 | 18900 | 7980 | 5030 | 4460 | 2520 | 1290 | | 13 | 2570 | 2000 | 1120 | 1160 | 1000 | 1320 | 22000 | 7300 | 4840 | 4150 | 2410 | 1260 | | 14 | 2560 | 2030 | 1080 | 1160 | 1000 | 1320 | 28500 | 6890 | 4680 | 3890 | 2360 | 1250 | | 15 | 2610 | 2050 | 1070 | 1150 | 1010 | 1320 | 31200 | 6890 | 4590 | 3710 | 2290 | 1250 | | 16 | 2820 | 2070 | 1060 | 1150 | 1030 | 1320 | 32700 | 7090 | 4470 | 3550 | 2250 | 1270 | | 17 | 3350 | 2080 | 1040 | 1140 | 1050 | 1330 | 33600 | 7690 | 4290 | 3500 | 2210 | 1270 | | 18 | 3750 | 2080 | 1020 | 1130 | 1070 | 1360 | 34000 | 8600 | 4090 | 3390 | 2160 | 1280 | | 19 | 3740 | 2070 | 1010 | 1120 | 1080 | 1370 | 34000 | 9300 | 3910 | 3280 | 2120 | 1300 | | 20 | 3460 | 2080 | 1000 | 1110 | 1100 | 1390 | 33400 | 10100 | 3730 | 3220 | 2060 | 1290 | | 21 | 3220 | 2100 | 996 | 1090 | 1110 | 1420 | 32500 | 10700 | 3580 | 3510 | 2020 | 1300 | | 22 | 3100 | 2090 | 992 | 1080 | 1110 | 1480 | 31400 | 11200 | 3440 | 3950 | 1990 | 1310 | | 23 | 3080 | 2030 | 1030 | 1100 | 1120 | 1610 | 30000 | 11300 | 3360 | 4150 | 1990 | 1310 | | 24 | 3030 | 1870 | 1090 | 1120 | 1140 | 1840 | 28500 | 11000 | 3250 | 4220 | 1890 | 1280 | | 25 | 2940 | 1630 | 1130 | 1130 | 1160 | 2130 | 26700 | 10400 | 3190 | 4600 | 1780 | 1280 | | 26
27
28
29
30
31 | 2840
2710
2620
2540
2480
2440 | 1500
1470
1430
1380
1330 | 1130
1140
1140
1140
1130 | 1130
1140
1130
1110
1090
1060 | 1170
1190
1210
 | 2480
2800
3010
3220
3630
4710 | 25000
23400
22100
19000
17000 | 9580
8760
8000
7280
6670
6210 | 3130
3050
3000
2950
2930 | 5200
5410
5280
5160
4940
4660 | 1690
1630
1550
1510
1510
1570 | 1270
1280
1340
1340
1330 | | TOTAL | 74448 | 58900 | 34228 | 35670 | 29530 | 54380 | 662410 | 274820 | 127820 | 126780 | 76400 | 40370 | | MEAN | 2402 | 1963 | 1104 | 1151 | 1055 | 1754 | 22080 | 8865 | 4261 | 4090 | 2465 | 1346 | | MAX | 3750 | 2370 | 1280 | 1220 | 1210 | 4710 | 34000 | 14300 | 5820 | 5410 | 4320 | 1600 | | MIN | 911 | 1330 | 992 | 1060 | 9 7 5 | 1220 | 6130 | 6210 | 2930 | 2830 | 1510 | 1250 | | AC-FT | 147700 | 116800 | 67890 | 70750 | 58570 | 107900 | 1314000 | 545100 | 253500 | 251500 | 151500 | 80070 | 6110 34000 MAX MIN 246 MIN 911 AC-FT 1113000 3165000 # 05102500 RED RIVER OF THE NORTH AT EMERSON, MANITOBA--Continued (National stream-quality accounting network station) (Pesticide station) ### WATER-QUALITY RECORDS PERIOD OF RECORD. -- Water years 1978 to current year. REMARKS. -- Letter K indicates non-ideal colony count and letter E indicates estimated value. WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | | DA | T:
TE | STRE
FLC
INST
IME TANE
(CF
(OOC | OW, CON
CAN- DUC
COUS ANG
PS) (UMB | FIC
N- P.
CT- (ST.
CE A.
HOS) UNI | AND- A
RD
IS) (D | AIR A'
EG C) (D | MPER- B
TURE I'
EG C) (N' | UR-
ID-
TY
TU)
076) | | |-----------------|------------------------------------|---|---|---|---|---|---|---------------------------------|---|--| | | | 1 | 035 E2 | 2250 | 650 | 8.6 | •5 | 4.0 | | | | | | 1 | 415 1 | .260 | 600 | 7.9 | -20.0 | •0 | 5.2 | | | | FEB
24
APR | 1. | 230 1 | .140 | 440 | 7.7 | -6.5 | • 0 | 9.5 | | | | | 1: | 335 23 | 100 | 515 | 8.3 | 16.0 | 11.0 | 6 | | | | | 1: | 100 E2 | 950 | 602 | 8.4 | 23.5 | 20.5 11 | 0 | | | | | | 310 1 | .970 | 534 | 8.4 | 16.0 | 22.0 8 | 7 | | | | | DATE | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | STREF
TOCOCC
FECAL
KF AGA
(COLS.
PER
100 ML
(31673 | HARD-
R NESS
(MG/L
AS
CACO3 | | | | | | | NOV
17 | 12.9 | 101 | К3 | 8 | io | - _. | | | | | | JAN
11 | 12.4 | 87 | 113 | 17 | 6 27 | 3 65 | | | | | | FEB
24
APR | 9.4 | 65 | K17 | K2 | 23 | 2 55 | | | | | | 27
JUN | 9.2 | 85 | K30 | 48 | 0 19 | 7 49 | | | | | | 30
AUG | 7.9 | 90 | К13 | К3 | 2 25 | 9 59 | | | | | | 24 | 7.9 | 93 | К35 | К9 | 0 20 | 6 48 | | | | DATE | TIME | PCB,
TOTAL
(UG/L)
(39516) | PCB,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG)
(39519) | ALDRIN,
TOTAL
(UG/L)
(39330) | ALDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG)
(39333) | CHLOR
DANE,
TOTAL
(UG/L)
(39350 | TOM MA
TERIAI
(UG/KG | - DDD,
L TOTAL
) (UG/L) | DDD,
TOTAL
IN
BOT-
TOM MA-
TERIAL
(UG/KG)
(39363) | DDE,
TOTAL
(UG/L)
(39365) | | NOV
17 | 1035 | | 0 | | .0 | _ | 1 | o | .6 | | | FEB
24 | 1230 | <.10 | | <.01 | | <.1 | 0 | - <.01 | | <.01 | | APR
27 | 1335 | <.10 | <1 | <.01 | <.1 | <.1 | 0 <1.0 | <.01 | <.1 | <.01 | | DATE | DDT,
TOTAL
(UG/L)
(39370) | DDT,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG)
(39373) | DI-
AZINON,
TOTAL
(UG/L)
(39570) | DI-
ELDRIN
TOTAL
(UG/L)
(39380) | DI-
ELDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG)
(39383) | ENDO-
SULFAN
TOTAL
(UG/L
(39388 | , ENDRIN
TOTAL
) (UG/L | TERIAL
(UG/KG) | ETHION,
TOTAL
(UG/L)
(39398) | HEPTA-
CHLOR,
TOTAL
(UG/L)
(39410) | | NOV | | 2 | | | 3 | | | 1 | | | | 17
FEB
24 | | •0 | | | .1 | | 1 / 0 | 0 | | | | APR | <.01 | <.1 | .00 | <.01 | | <.0
<.0 | | | .00
<.01 | <.01
<.01 | | 27 | <.01 | 1.1 | <.01 | <.01 | .1 | \.U | ± \•0. | . | \.UI | \.UI | ### 05102500 RED RIVER AT EMERSON, MANITOBA--Continued | | HEPTA- | | HEPTA- | | | | METH- | | | NAPH- | | |------|---------|---------|---------|---------|---------|---------|---------|-------------------|-------------------|---------|--| | | CHLOR, | | CHLOR | | LINDANE | | OXY- | | | THA- | | | | TOTAL | HEPTA- | EPOXIDE | | TOTAL | | CHLOR, | \mathtt{METHYL} | \mathtt{METHYL} | LENES, | | | | IN BOT- | CHLOR | TOT. IN | | IN BOT- | MALA- | TOT. IN | PARA- | TRI- | POLY- | | | | TOM MA- | EPOXIDE | BOTTOM | LINDANE | TOM MA- | THION, | BOTTOM | THION, | THION, | CHLOR. | | | | TERIAL | TOTAL | MATL. | TOTAL | TERIAL | TOTAL | MATL. | TOTAL | TOTAL | TOTAL | | | DATE | (UG/KG) | (UG/L) | (UG/KG) | (UG/L) | (UG/KG) | (UG/L) | (UG/KG) | (UG/L) | (UG/L) | (UG/L) | | | | (39413) | (39420) | (39423) | (39340) | (39343) | (39530) | (39481) | (39600) | (39790) | (39250) | | | | | | | | | | | | | | | | NOV | | | | | | | | | | | | | 17 | .0 | | .0 | | .0 | | .0 | | | | | | FEB | | | | | | | | | | | | | 24 | | <.01 | | <.01 | | .00 | | .00 | .00 | <.10 | | | APR | | | | | | | | | | | | | 27 | <.1 | <.01 | <.1 | <.01 | .1 | <.01 | <.1 | <.01 | <.01 | <.10 | | | DATE | MIREX,
TOTAL
(UG/L)
(39755) | PARA-
THION,
TOTAL
(UG/L)
(39540) | PER-
THANE
TOTAL
(UG/L)
(39034) | TOX-
APHENE,
TOTAL
(UG/L)
(39400) | TOXA-
PHENE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG)
(39403) | TOTAL TRI- THION (UG/L) (39786) | 2,4-D,
TOTAL
(UG/L)
(39730) | 2,4,5-T
TOTAL
(UG/L)
(39740) | SILVEX,
TOTAL
(UG/L)
(39760) | |-----------|--------------------------------------|---|---|---|--|---------------------------------|--------------------------------------|---------------------------------------|---------------------------------------| | NOV
17 | | | | | .0 | | | | | | FEB
24 | <.01 | .00 | <.10 | <1 | | .00 | .03 | •00 | .00 | | APR
27 | <.01 | <.01 | <.10 | <1 | <10 | <.01 | .04 | <.01 | <.01 | | DATE | TIME | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | SED.
SUSP.
SIEVE
DIAM.
% FINER
THAN
.062 MM
(70331) | |------------------|------|---|---|--| | FEB
24
APR | 1230 | 22 | 68 | | | 27
JUN | 1335 | 213 | 13300 | 99 | | 30 | 1100 | 188 | | 100 | CAL YR 1981 TOTAL 13529.1 WTR YR 1982 TOTAL 33433.4 MEAN 37.1 MEAN 91.6 MAX MAX 1820 502 #### RED RIVER OF THE NORTH BASIN ### 05104500 ROSEAU RIVER BELOW SOUTH FORK NEAR MALUNG, MN LOCATION.--Lat 48°47'30", long 95°44'40", in NW&SW& sec.6, T.161 N., R.39 W., Roseau County, Hydrologic Unit 09020314, on left bank 0.3 mi (0.5 km) downstream from South Fork and 1.5 mi (2.4 km) northwest of Malung. DRAINAGE AREA.--573 mi^2 (1,484 km^2). PERIOD OF RECORD. -- October 1946 to current year. REVISED RECORDS.--WSP 2113: 1948, 1950, 1951, 1956(M), 1957(M), 1962(M). GAGE .-- Water-stage recorder and concrete control. Datum of gage is 1,029.67 ft (313.843 m), adjustment of 1912. REMARKS.--Records good except those for the winter period and those for period of no gage-height record, June 11 to July 21, which are poor. Some flow bypasses the gaging station through a natural overflow channel 0.8 mi (1.3 km) upstream and returns to river 0.5 mi (0.8 km) downstream. Overflow begins at stage of about 13.0 ft (4.0 m), discharge, 1,800 ft³/s (51.0 m³/s). These records include any flow in the overflow channel. AVERAGE DISCHARGE.--36 years, 144 ft 3 /s (4. 078 m 3 /s), 104,300 acre-ft/yr (129 hm 3 /yr); median of yearly mean discharges, 114 ft 3 /s (3.23 m 3 /s), 82,600 acre-ft/yr (102 hm 3 /yr). EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,750 ft³/s (163 m³/s) July 18, 1968, gage height, 22.32 ft (6.803 m); maximum gage height, 23.37 ft (7.123 m) Apr. 3, 1966 (backwater from ice); no flow for part of Jan. 15, 1952 (caused by construction of concrete control), July 23 to Sept. 8, 1961, Dec. 22 to Mar. 10, 1977, and Sept. 9-11, 1980. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,880 ft 3 /s (53.2 m 3 /s) Apr. 18, gage height, 13.24 ft (4.036 m); minimum, 4.0 ft 3 /s (0.11 m 3 /s) Jan. 18-20, gage height, 4.64 ft (1.414 m). DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | | | | | | | MEAN VALU | ES | | | | | | |--------------------------------------|----------------------------------|----------------------------------|--------------------------------------|------------------------------------|------------------------------------|--------------------------------------|--------------------------------------|--|----------------------------------|-----------------------------------|------------------------------------|-----------------------------------| | DAY | OCT | NOA | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 16
22
32
46
59 | 51
51
52
52
52 | 33
31
29
28
22 | 6.7
6.9
6.9
7.4 | 4.9
4.9
4.9
4.8 | 5.7
5.7
5.9
6.0 | 100
100
95
90
85 | 254
232
216
204
198 | 90
78
69
61
54 | 16
15
15
20
40 | 35
30
29
30
26 | 38
35
31
28
25 | | 6
7
8
9
10 | 64
70
78
70
69 | 50
48
48
46
46 | 26
31
27
24
22 | 7.4
7.4
7.4
7.4
7.2 | 4.7
4.6
4.6
4.6 | 6.1
6.1
5.9
5.8 | 80
7 5
70
65
60 | 210
219
207
198
184 | 48
48
44
46
57 | 130
170
160
150
130 | 27
24
25
23
18 | 21
13
13
14
12 | | 11
12
13
14
15 | 66
65
66
69
74 | 46
44
46
46
44 | 22
22
21
20
18 | 7.2
6.3
5.5
5.1
4.8 | 4.4
4.3
4.2
4.2 | 5.7
5.8
5.9
5.0 | 200
350
600
900
1200 | 178
173
175
173
175 | 70
70
65
60
55 | 110
95
80
65
56 | 15
13
12
11
10 | 11
9.4
8.9
8.0
8.1 | | 16
17
18
19
20 | 80
85
79
70
64 | 50
48
53
61
60 | 15
14
14
13 | 4.6
4.3
4.2
4.0
4.2 | 4.2
4.4
4.5
4.6
4.7 | 6.2
6.4
6.7
6.9
7.2 | 1400
1600
1820
1760
1430 | 187
204
245
282
310 | 50
46
43
40
37 | 50
47
44
42
39 | 9.0
8.2
9.5
9.8 | 8.7
8.4
8.6
7.7
7.5 | | 21
22
23
24
25 | 59
57
53
50
46 | 48
61
44
40
38 | 12
13
12
11 | 4.2
4.3
4.4
4.6
4.6 | 4.8
5.0
5.1
5.2
5.3 | 7.4
7.5
7.7
7.9
8.1 | 1180
950
774
648
564 | 336
336
302
264
232 | 34
31
29
27
25 | 37
34
31
33
29 | 10
13
15
21
28 | 7.2
7.1
6.6
6.5
6.4 | | 26
27
28
29
30
31 | 42
51
58
58
54
53 | 36
33
33
29
33 | 11
12
9.6
9.2
7.9
7.4 | 4.6
4.7
4.9
4.9
4.9 | 5.3
5.3
5.5
 | 8.3
8.5
9.1
11
30
100 | 487
422
347
313
285 | 211
177
155
141
121
102 | 23
21
19
18
17 | 34
32
35
38
39
37 | 40
45
47
46
44
41 | 5.9
6.0
11
17
35 | | TOTAL
MEAN
MAX
MIN
AC-FT | 1825
58.9
85
16
3620 | 1389
46.3
61
29
2760 | 559.1
18.0
33
7.4
1110 | 172.6
5.57
7.4
4.0
342 | 132.7
4.74
5.5
4.2
263 | 327.6
10.6
100
5.7
650 | 18050
602
1820
60
35800 | 6601
213
336
102
13090 | 1375
45.8
90
17
2730 | 1853
59.8
170
15
3680 | 723.4
23.3
47
8.2
1430 | 425.0
14.2
38
5.9
843 | MIN 1.2 MIN 4.0 AC-FT 26830 66320 ### 05105300 ROSEAU RIVER BELOW ROSEAU, MN LOCATION.--Lat 48°53'28", long 95°43'50", in SW\(\)3E\(\)4 sec.31, T.163 N., R.39 W., Roseau County, Hydrologic Unit 09020314, at bridge on County Highway 28, 900 ft (274 m) downstream from Hay Creek and 3.2 mi (5.1 km) northeast of Roseau. PERIOD OF RECORD. -- Water years 1973 to current year. REMARKS.--Letter K indicates non-ideal colony count. WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | | | WATER Q | UALITY DA | TA, WATER | YEAR OCT | OBER 1981 | TO SEPTE | MBER 1982 | | | |------------|---|--
--|--|---|--|--|---|---|--| | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS)
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS)
(00095) | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(UMHOS)
(90095) | PH
(STAND-ARD
UNITS)
(00400) | TEMPER-
ATURE,
AIR
(DEG C)
(00020) | TEMPER-
ATURE
(DEG C)
(00010) | COLOR
(PLAT-
INUM-
COBALT
UNITS)
(00080) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | | NOV | 3.5.00 | c li | 200 | 272 | 0 (| 10.0 | 2.0 | li o | 33 7 | 90 | | 02
DEC | 1540 | 54 | 388 | 372 | 8.6 | 12.0 | 3.0 | 40 | 11.7 | 89 | | 14
JAN | 1545 | 25 | 440 | 347 | 7.8 | •0 | •0 | 30 | 11.0 | 79 | | 25
Mar | 1600 | 6.1 | 620 | 630 | 7.6 | -20.0 | .0 | 29 | 2.5 | 18 | | 22
MAY | 1515 | 9.5 | 510 | 519 | 7.2 | .0 | .0 | 20 | 4.2 | 30 | | 25
JUL | 1555 | 258 | 338 | 339 | 8.1 | 23.0 | 19.0 | 50 | 8.7 | 98 | | 12
AUG | 1545 | 124 | 305 | 315 | 8.2 | 29.0 | 23.0 | 40 | 8.0 | 98 | | 31 | 1530 | 44 | | 285 | 8.2 | 19.0 | 15.0 | 45 | 8.9 | 92 | DATE | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | STREP-
TOCOCCI
FECAL,
KF AGAR
(COLS.
PER
100 ML)
(31673) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3)
(90410) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | | NOV | | | | - 0 | | | | | • | _ | | DEC
DEC | К16 | 72 | 53 | 18 | 5.7 | 1.5 | 200 | 13 | 3.3 | .1 | | 14
JAN | K32 | 88 | 49 | 16 | 5•3 | 1.2 | 180 | 13 | 3.1 | .1 | | 25
MAR | 230 | K190 | 74 | 31 | 16 | 2.6 | 330 | 25 | 5.7 | •2 | | 22
MAY | 440 | >400 | 58 | 24 | 13 | 4.5 | 260 | 18 | 7 • 7 | •1 | | 25
JUL | 120 | К860 | 46 | 14 | 3.8 | 1.0 | 171 | 9.0 | 1.6 | .1 | | 12
AUG | 120 | 400 | 43 | 14 | 3.6 | • 7 | 160 | 5.0 | 1.5 | •1 | | 31 | 96 | 270 | 38 | 13 | 3.8 | .6 | 147 | 4.0 | 1.0 | .1 | | DATE | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-PHORUS, ORTHO, DIS-SOLVED (MG/L AS P) (00671) | BORON,
DIS-
SOLVED
(UG/L
AS B)
(01020) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | CARBON,
ORGANIC
SUS-
PENDED
TOTAL
(MG/L
AS C)
(00689) | | NOV
02 | 10 | 9 | .06 | 1.0 | <.010 | <10 | 100 | 9 | | .4 | | DEC
14 | 8.6 | 56 | .14 | | <.010 | 40 | 88 | 18 | 17 | | | JAN | | | | | | | 84 | 270 | | | | 25
MAR | 20 | 10 | .19 | 1.2 | .050 | 50 | | | 10 | •5 | | 22
MAY | 18 | 24 | •39 | 2.9 | .470 | 70 | 100 | 110 | 19 | 1.1 | | 25
JUL | 7.7 | 54 | <.10 | 1.7 | •020 | <10 | 77 | 19 | 23 | .4 | | 12
AUG | 8.6 | 8 | <.10 | •90 | .020 | 100 | 50 | 9 | 23 | • 4 | | 31 | 8.2 | 3 | <.10 | 1.2 | .020 | 110 | 43 | 11 | 19 | .4 | ### 05106500 ROSEAU RIVER AT ROSEAU LAKE, MN LOCATION.--Lat 48°54'22", long 95°49'55", in SWåSWå sec.28, T.163 N., R.40 W., Roseau County, Hydrologic Unit 09020314, at downstream side of bridge on County Road 123 at Roseau Lake, 3.5 mi (5.6 km) upstream from Pine Creek, 3.8 mi (6.1 km) downstream from Sprague Creek, and 7 mi (11 km) northwest of Roseau. PERIOD OF RECORD. -- November 1939 to current year (incomplete). GAGE.--Water-stage recorder. Datum of gage is 1,018.59 ft (310.466 m), adjustment of 1928 (levels by Geodetic Survey of Canada); gage readings have been reduced to elevations adjustment of 1928. Prior to Aug. 26, 1970, and Oct. 18, 1979 to Sept. 30, 1980, nonrecording gage at same site and datum. EXTREMES FOR PERIOD OF RECORD. -- Maximum elevation observed, 1,036.86 ft (316.035 m) May 13, 1950; minimum observed, 1,019.75 ft (310.820 m) Aug. 16, 1941. EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood in July 1919 reached an elevation of about 1,034 ft (315.2 m). EXTREMES FOR CURRENT YEAR.--Maximum elevation, 1,032.46 ft (314.694 m) Apr. 20; minimum, less than 1,021.74 ft (311.426 m) Sept. 11-28. GAGE HEIGHT (FEET ABOVE DATUM), WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 MEAN VALUES | | | | | | 1.1 | OUTA AUTO | 100 | | | | | | |----------------------------------|--|-------------------------|-----|-----|-----|-----------|---|--|---|--|--|---| | DAY | OC'T | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 22.90
23.69
24.02
24.24
24.52 | 23.30
23.22
23.18 | | | | | 29.20 | 30.43
30.16
29.91
29.69
29.47 | 24.48
24.17
23.82
23.44
23.08 | 22.05
21.95
21.88
21.85
22.38 | 23.57
23.42
23.26
23.05
22.78 | 22.32
22.25
22.19
22.16
22.12 | | 6
7
8
9
10 | 24.69
24.73
24.69
24.64
24.56 | | | | | | 28.94
28.33
28.15
28.57 | 29.23
29.00
28.77
28.53
28.31 | 22.85
22.80
23.04
23.19
23.78 | 23.94
24.84
25.13
24.94
24.59 | 22.59
22.73
23.28
23.32
23.14 | 22.05
21.98
21.86
21.76
21.74 | | 11
12
13
14
15 | 24.52
24.45
24.59
24.88
24.96 | | | | | | 29.10
29.86
30.29
31.25
31.85 | 28.06
27.83
27.57
27.32
27.27 | 24.26
24.33
24.11
23.89
23.69 | 24.27
23.97
23.52
23.24
22.90 | 22.88
22.58
22.34
22.17
22.04 | | | 16
17
18
19
20 | 24.90
24.81
24.69
24.49
24.26 | | | | | | 31.92
32.15
32.25
32.42
32.44 | 27.33
27.36
27.42
27.47
27.47 | 23.46
23.20
22.97
22.80
22.74 | 22.67
22.60
22.60
22.57
22.46 | 21.95
21.88
21.93
22.51
22.84 | | | 21
22
23
24
25 | 24.04
23.83
23.65
23.47 | | | | | | 32.43
32.37
32.27
32.12
31.96 | 27.45
27.38
27.26
27.02
26.72 | 22.75
22.65
22.51
22.39
22.29 | 22.35
22.32
22.26
22.88
23.39 | 22.67
22.55
22.54
22.49
22.41 | | | 26
27
28
29
30
31 | 23.02
23.30
23.21
23.20
23.27
23.32 | | | | | | 31.76
31.53
31.28
31.00
30.75 | 26.42
26.12
25.79
25.43
25.10
24.79 | 22.21
22.21
22.19
22.15
22.11 | 23.29
22.98
22.79
22.88
23.38
23.58 | 22.38
22.44
22.48
22.49
22.46
22.41 | 22.05 | | MEAN
MAX
MIN | | | | | | | | 27.68
30.43
24.79 | 23.12
24.48
22.11 | 23.11
25.13
21.85 | 22.63
23.57
21.88 | | NOTE: Add 1,000 ft to obtain elevations in adjustment of 1928. ### 05107500 ROSEAU RIVER AT ROSS, MN LOCATION.--Lat 48°54'37", long 95°55'18", in NE\set sec.27, T.163 N., R.41 W., Roseau County, Hydrologic Unit 09020314, on left bank 300 ft (91 m) downstream from highway bridge, 0.2 mi (0.3 km) north of Ross, and 2.3 mi (3.7 km) downstream from Pine Creek. DRAINAGE AREA.--1,220 mi² (3,160 km²), approximately. PERIOD OF RECORD .-- July 1928 to current year. REVISED RECORDS.--WSP 1055: 1945. WSP 1175: Drainage area. WSP 1308: 1936(M). WSP 1508: 1948-49(P). GAGE.--Water-stage recorder. Datum of gage is 1,018.44 ft (310.42 m), adjustment of 1928 (levels by Geodetic Survey of Canada). Prior to Mar. 13, 1929, nonrecording gage at same site and datum. REMARKS .-- Records good except those for winter period, which are fair. High flow affected by natural storage in Roseau Lake. AVERAGE DISCHARGE.--54 years, 262 ft 3 /s (7.420 m 3 /s), 189,800 acre-ft/yr (234 hm 3 /yr); median of yearly mean discharges, 235 ft 3 /s (6.66 m 3 /s), 170,000 acre-ft/yr (210 hm 3 /yr). EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, $6,560 \text{ ft}^3/\text{s}$ (186 m $^3/\text{s}$) May 12, 1950, gage height, 18.25 ft (5.563 m); no flow Aug. 29, 30, 1961, Jan. 3 to Mar. 3, 1977, Aug. 23-25, 1977 and Aug. 3, 1980. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage known, about 19 ft (5.8 m) in 1896. Other outstanding floods reached the following stages, from information by local residents: flood of July 1919, 17.5 ft (5.3 m); flood of 1927, about 16 ft (4.9 m). EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,850 ft^3/s (52.4 m^3/s) Apr.21, gage height, 13.04 ft (3,975 m); minimum daily, 7.4 ft^3/s (0.21 m^3/s) Jan. 23-29; minimum gage height, 1.41 ft (0.430 m) Sept. 26. | | | DISCHARG | E, IN CU | BIC FEET | PER SECO | ND, WATER
MEAN VALU | YEAR OCT | OBER 1981 | TO SEPTEM | IBER 1982 | | | |--------------------------------------|--|----------------------------------|----------------------------------
--|------------------------------------|-----------------------------------|--------------------------------------|--|----------------------------------|--|----------------------------------|---------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 108
201
250
277
313 | 163
156
150
147
144 | 95
92
88
85
82 | 15
15
14
13 | 7.5
7.5
7.5
7.5
7.5 | 8.6
8.7
8.8
8.9
9.0 | 100
100
100
100
100 | 1390
1320
1240
1190
1140 | 293
256
219
182
149 | 43
37
33
32
66 | 202
189
175
157
136 | 70
65
60
53
46 | | 6
7
8
9
10 | 333
339
337
330
319 | 141
135
128
118
111 | 80
78
76
72
68 | 12
11
11
10
9.8 | 7.5
7.5
7.5
7.5
7.5 | 9.1
9.2
9.3
9.4
9.5 | 95
95
90
90
100 | 1080
1030
987
943
899 | 127
129
143
153
205 | 228
341
385
364
324 | 117
119
157
173
161 | 40
34
29
23
20 | | 11
12
13
14
15 | 314
304
322
358
368 | 104
103
102
103
107 | 66
64
62
60
58 | 9.4
8.8
8.4
8.0
7.8 | 7.5
7.6
7.6
7.6
7.7 | 9.6
9.8
9.8
10 | 200
500
900
1100
1300 | 852
810
757
711
698 | 261
274
253
229
209 | 281
247
202
172
142 | 142
117
97
80
66 | 18
17
16
16
15 | | 16
17
18
19
20 | 361
348
331
307
278 | 114
124
127
128
121 | 52
47
42
38
34 | 7.5
7.5
7.5
7.5
7.5 | 7.7
7.8
7.9
8.0
8.0 | 10
10
10
11 | 1450
1600
1700
1750
1810 | 702
703
713
717
717 | 188
164
143
127
121 | 117
107
105
101
94 | 54
42
38
68
107 | 15
14
14
14
14 | | 21
22
23
24
25 | 250
225
205
184
160 | 120
120
118
114
108 | 29
27
25
23
22 | 7.5
7.5
7.4
7.4
7.4 | 8.1
8.2
8.2
8.3
8.3 | 11
11
11
11
12 | 1840
1830
1820
1790
1760 | 713
702
679
643
611 | 121
113
102
91
82 | 86
78
73
123
184 | 106
98
95
92
86 | 13
13
13
13 | | 26
27
28
29
30
31 | 155
162
157
154
161
165 | 105
105
103
100
98 | 20
19
18
17
17 | 7 • 4
7 • 4
7 • 4
7 • 4
7 • 5
7 • 5 | 8.4
8.5
 | 13
14
16
20
30
60 | 1710
1660
1590
1510
1460 | 554
506
460
413
371
332 | 72
66
61
53
47 | 183
156
137
136
175
198 | 81
79
80
80
77
73 | 11
12
19
34
51 | | TOTAL
MEAN
MAX
MIN
AC-FT | 8076
261
368
108
16020 | 3617
121
163
98
7170 | 1572
50.7
95
16
3120 | 284.5
9.18
15
7.4
564 | 218.8
7.81
8.5
7.5
434 | 400.7
12.9
60
8.6
795 | 30250
1008
1840
90
60000 | 24583
793
1390
332
48760 | 4633
154
293
47
9190 | 4950
160
385
32
9820 | 3344
108
202
38
6630 | 784
26.1
70
11
1560 | | CAL YR
WTR YR | | | | | | MIN 2.8
MIN 7.4 | AC-FT
AC-FT | 86610
164100 | | | | | # 05112000 ROSEAU RIVER BELOW STATE DITCH 51, NEAR CARIBOU, MN (International gaging station) LOCATION.--Lat 48°58'54", long 96°27'46", in SE\SW\ sec.34, T.164 N., R.45 W., Kittson County, Hydrologic Unit 09020314, on left bank 400 ft (122 m) downstream from State ditch 51 (known locally as Caribou cutoff ditch) and 0.6 m1 (1.0 km) west of Caribou. DRAINAGE AREA.--1,570 mi² (4,070 km²), approximately. ### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--April to October 1917, April 1920 to current year (no winter records in water years 1931, 1932, 1934-36, 1938-40, 1944-72). Published as "at Caribou," prior to April 1929; as "below Cutoff ditch, near Caribou" April 1929 to September 1936. Records published for both sites April 1929 to September 1930. Monthly discharge only for some periods, published in WSP 1308. REVISED RECORDS.--WSP 1308: 1938(M). WSP 1508: 1917(M), 1920, 1932(M), 1934-35(M). WSP 1913: 1954(M). GAGE.--Water-stage recorder. Datum of gage is 1,002.14 ft (305.452 m), adjustment of 1928, (levels by Geodetic Survey of Canada). Prior to Apr. 1, 1929, nonrecording gage at site at Caribou 0.6 mi (1.0 km) upstream at datum 0.95 ft (0.290 m) lower. REMARKS.--Records fair except those for the winter period, which are poor. Occasionally, at high stages, there is some natural diversion of flow above station to headwaters of Two Rivers. COOPERATION. -- This station is one of the international gaging stations maintained by the United States under agreement with Canada. AVERAGE DISCHARGE.--25 years (water years 1921-30, 1933, 1937, 1941-43, 1973-82), 280 ft 3 /s (7.930 m 3 /s), 202,900 acre-ft/yr (250 hm 3 /yr). EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,080 ft 3 /s (116 m 3 /s) May 19, 1950, gage height, 11.81 ft (3.600 m); no flow Aug. 13, 1936. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of 1916 is reported to have reached a stage of about 15.5 ft (4.72 m) at former site. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,660 $\rm ft^3/s$ (47.0 $\rm m^3/s$) Apr. 30 to May 2, gage height, 7.74 ft (2.359 m) May 1; maximum gage height, 8.11 ft (2.472 m) Apr. 15 (backwater from ice); minimum daily discharge, 12 $\rm ft^3/s$ (0.34 $\rm m^3/s$) Jan. 18 to Feb. 2. | | | DISCHARGE | , IN | CUBIC FEET | PER SECOND | , WATER
AN VALU | YEAR OCTO | BER 1981 | TO SEPTE | MBER 1982 | | | |--------------------------------------|--|---------------------------------|-----------------------------------|----------------------------------|--------------------------------|----------------------------------|--------------------------------------|--|------------------------------------|--|----------------------------------|----------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 96
127
211
286
319 | 274
238
223
215
234 | 150
150
145
145
140 | 23
22
21
20
20 | 12
12
13
13 | 16
16
16
16
16 | 95
120
150
160
160 | 1660
1650
1650
1630
1610 | 510
458
406
356
306 | 218
222
222
214
248 | 235
243
236
219
196 | 80
77
73
68
61 | | 6
7
8
9
10 | 346
368
421
491
521 | 264
266
257
248
234 | 140
135
135
135
130 | 19
18
17
16
15 | 13
13
13
13 | 17
17
17
17
17 | 155
150
145
140
140 | 1570
1520
1490
1470
1470 | 269
250
246
267
304 | 389
463
512
538
533 | 180
159
139
153
180 | 56
54
47
40
35 | | 11
12
13
14
15 | 524
532
552
553
565 | 226
217
213
213
214 | 130
130
130
125
125 | 15
14
14
13
13 | 13
13
13
13
13 | 18
18
18
18 | 200
300
400
600
770 | 1440
1400
1350
1310
1280 | 335
372
387
375
349 | 497
443
388
348
314 | 182
169
150
124
102 | 35
32
32
30
29 | | 16
17
18
19
20 | 571
567
550
532
506 | 219
224
232
234
230 | 125
120
115
70
45 | 13
13
12
12
12 | 14
14
14
14
14 | 19
19
19
19 | 950
1180
1210
1250
1280 | 1250
1230
1200
1160
1110 | 319
293
262
239
227 | 282
249
212
182
154 | 78
63
56
50
44 | 25
25
23
24
22 | | 21
22
23
24
25 | 472
435
399
370
340 | 220
210
205
195
190 | 40
37
34
32
30 | 12
12
12
12
12 | 14
14
15
15
15 | 20
20
20
20
20 | 1310
1350
1400
1460
1500 | 1070
1030
1010
978
935 | 214
210
202
188
173 | 138
115
98
174
265 | 72
114
116
110
101 | 23
21
23
24
24 | | 26
27
28
29
30
31 | 302
301
300
300
298
298 | 180
175
165
160
155 | 29
28
27
26
25
24 | 12
12
12
12
12
12 | 15
15
15
 | 20
21
25
30
40
60 | 1550
1580
1620
1640
1660 | 889
830
763
694
626
567 | 156
147
196
225
220 | 282
269
243
221
209
216 | 95
87
80
81
81
82 | 23
26
36
40
37 | | TOTAL
MEAN
MAX
MIN
AC-FT | 12453
402
571
96
24700 | 218
274
155 | 2852
92.0
150
24
5660 | 454
14.6
23
12
901 | 381
13.6
15
12
756 | 646
20.8
60
16
1280 | 24625
821
1660
95
48840 | 37842
1221
1660
567
75060 | 8461
282
510
147
16780 | 8858
286
538
98
17570 | 3977
128
243
44
7890 | 1145
38.2
80
21
2270 | CAL YR 1981 TOTAL 53744.0 MEAN 147 MAX 739 MIN 3.5 AC-FT 106600 WTR YR 1982 TOTAL 108224.0 MEAN 297 MAX 1660 MIN 12 AC-FT 214700 ### 05112000 ROSEAU RIVER BELOW STATE DITCH 51 NEAR CARIBOU, MN--Continued (National stream-quality accounting network station) #### WATER-QUALITY RECORDS PERIOD OF RECORD .-- Water years 1972 to current year. PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: November 1973 to current year. WATER TEMPERATURES: October 1980 to September 1981. INSTRUMENTATION .-- Water-quality minimonitor since October 1980. REMARKS.--Extremes are published for
those years with 80 percent or more record. Letter K indicates non-ideal colony count. EXTREMES FOR PERIOD OF DAILY RECORD. -- SPECIFIC CONDUCTANCE (water year 1981): Maximum, 803 micromhos Jan. 21, 1981; minimum, 261 micromhos Mar. 30, Apr. 1, 2, 1981. WATER TEMPERATURES (water year 1981): Maximum, 27.0°C July 19, 1981; minimum, 0.0°C several days during winter period. EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum, 686 micromhos Feb. 8; minimum, 173 micromhos Apr. 3. WATER TEMPERATURES: Maximum, 25.5°C July 20, 21; minimum, 0.0°C several days during winter period. | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS)
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS)
(00095) | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(UMHOS)
(90095) | PH
(UNITS)
(00400) | PH
LAB
(UNITS)
(00403) | TEMPER-
ATURE,
AIR
(DEG C)
(00020) | TEMPER-
ATURE
(DEG C)
(00010) | BARO-
METHIC
PRES-
SURE
(MM
OF
HG)
(00025) | TUR-
BID-
ITY
(NTU)
(00076) | |-----------|------|--|--|---|--------------------------|---------------------------------|--|--|---|---| | NOV | | | | | | | | | | | | 03
JAN | 1110 | 225 | 370 | 365 | 8.4 | 8.0 | 10.0 | 4.0 | 737 | 4.6 | | 26 | 1300 | 12 | 660 | 687 | 7.4 | 7.5 | -17.0 | .0 | 729 | 4.0 | | MAR
23 | 1030 | 19 | 530 | 554 | 7.2 | 7.4 | •5 | .0 | | 2.5 | | MAY
25 | 1200 | 937 | 338 | 347 | 7.8 | 7.9 | 23.0 | 18.0 | 732 | 2.3 | | JUL
13 | 1400 | 389 | 365 | 375 | 8.1 | 8.0 | 20.0 | 23.0 | 735 | 4.5 | | AUG
31 | 1130 | 80 | 357 | 375 | 8.4 | 8.4 | 19.0 | 15.0 | 732 | 4.4 | | DATE | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | STREP-
TOCOCCI
FECAL,
KF AGAR
(COLS.
PER
100 ML)
(31673) | HARD-
NESS
(MG/L
AS
CACO3)
(00900) | HARD-
NESS
NONCAR-
BONATE
(MG/L
AS
CACO3)
(95902) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM AD- SORP- TION RATIO (00931) | |-----------|--|---|---|---|---|--|---|---|---|-------------------------------------| | NOV
03 | 11.0 | 87 | К9 | 39 | 20 2 | 12 | 48 | 20 | 5.7 | •2 | | JAN | 11.0 | 07 | K9 | 39 | 202 | 12 | 40 | 20 | 5.1 | • 2 | | 26
MAR | .6 | 4 | 31 | 180 | 356 | .00 | 83 | 36 | 13 | •3 | | 23
MAY | 1.2 | 9 | К6 | 40 | 280 | .00 | 66 | 28 | 12 | •3 | | 25
JUL | 7.0 | 77 | К8 | K840 | 176 | 8.0 | 44 | 16 | 3.6 | •1 | | 13
AUG | 6.2 | 75 | 48 | 550 | 194 | 2.0 | 48 | 18 | 4.8 | •5 | | 31 | 9.1 | 94 | к56 | 530 | 200 | 11 | 47 | 50 | 5.2 | .2 | ### 05112000 ROSEAU RIVER BELOW STATE DITCH 51 NEAR CARIBOU, MN--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | DA | ate | POTAS
SIUM
DIS-
SOLVE
(MG/L
AS K) | LINI
LA
D (MG
AS
CAC | TY
18
3/L
3
203) | SULF
DIS
SOL
(MG
AS S | -
VED
/L
04) | CHL
RID
DIS
SOL
(MG
AS | E,
VED
/L
CL) | FLU
RID
DI
SOL
(MG
AS | E,
S-
VED
/L
F) | SILI
DIS
SOL
(MG
AS
SIO | VED
/L
2) | SOLII
RESII
AT 18
DEG
DIS
SOLI
(MG, | DUÉ
80
. C
S-
VED
/L) | SOLI
SUM
CONS
TUEN
DI
SOL
(MG | OF
TI-
TS,
S-
VED
/L) | SOLI
DI
SOL
(TO
PE
DA
(703 | S-
VED
NS
R
Y) | |-------------|--|--|--|------------------------------|---|-------------------------|--|--------------------------|--|-----------------------------|---|---------------------|---|--------------------------------------|---|--------------------------------------|--|--| | VON | 7
3 | 1. | 5 190 | 1 | 1 | 4 | | 3.5 | | .1 | 1 | 3 | | 275 | | 220 | 16 | 7 | | JAN | | 2. | | | | 6 | | 4.2 | | .2 | | 4 | | 473 | | 410 | | 5•3 | | MAR | | 2. | • | | | 5 | | 4.3 | | .2 | | .9 | | 353 | | 327 | | 7•9 | | MAY
25 | · | 2. | | | | 2 | | 2.3 | | .1 | | 6.2 | | 246 | | 188 | 62 | | | JUL
13 | 3 | 1. | 0 192 | 2 | | 8.0 | | 1.9 | | .2 | 1 | .0 | | 274 | | 207 | 28 | 8 | | AUG
31 | • • • | 1. | 1 189 | 9 | 1 | 0 | | 2.5 | | .2 | 1 | .0 | | 261 | | 210 | 5 | 6.4 | | | | NITRO
GEN, | GE | RO-
EN, | NIT
GEN, | AM- | | | РНО | | PHO
PHOR | US, | | | SED
MEN | Т, | | SP. | | DA | TE | NO2+NO
DIS-
SOLVED
(MG/L
AS N)
(00631 | DI
SOLV
(MO | IS-
VED
3/L
N) | MONI
ORGA
TOTA
(MG
AS
(006 | NIC
L
/L
N) | PHOR
PHOR
TOTA
(MG
AS
(006 | US,
L
/L
P) | PHOR
DI
SOLV
(MG
AS
(006 | S-
ED
/L
P) | ORT
DIS
SOLVE
(MG/
AS P
(006 | L
) | SED:
MEN!
SUS-
PENI
(MG)
(801! | r,
DED
/L) | DI
CHAR
SUS
PEN
(T/D
(801 | GE,
-
DED
AY) | SIE
DI
FIN
TH
.062 | AM.
ER
AN
MM | | NOV | ,
3 | .0 | 6 . | .050 | | . 24 | | 030 | | 010 | ۷. | 010 | | 30 - | 1 | 8 | | 94 | | JAN | | .0 | | 500 | | .40 | | 080 | | 050 | | 050 | | 92 | | 3.0 | | 90 | | | | <.0 | 1 . | .460 | 1 | .20 | | 050 | | 030 | | 010 | | 29 | | 1.5 | | 98 | | | | <.1 | 0 . | .070 | 1 | .10 | | 090 | | 060 | | 040 | | 23 | 5 | 7 | | 92 | | | | <.1 | 0 . | .100 | 1 | .20 | | 140 | | 060 | | 050 | | 12 | 1 | 3 | | 96 | | AUG
31 | · • • • | <.1 | 0 . | 0 20 | 1 | .10 | | 040 | • | 040 | • | 030 | | 7 | | 1.5 | | 88 | | DATE
NOV | TI | ME | RSENIC
TOTAL
(UG/L
AS AS)
01002) | D
SO
(U
AS | ENIC
IS-
LVED
G/L
AS)
000) | RE(
ER
(U)
AS | IUM,
FAL
COV-
ABLE
5/L
BA) | DI:
SOL'
(UC
AS | | TO
RE
ER
(U
AS | MIUM
TAL
COV-
ABLE
G/L
CD)
027) | D
SO
(U
AS | MIUM
IS-
LVED
G/L
CD)
025) | REG
ER
(UG
AS | | MI
DI
SO
(U | RO-
UM,
S-
LVED
G/L
CR)
030) | COBALT,
TOTAL
RECOV-
ERABLE
(UG/L
AS CO)
(01037) | | 03
JAN | 11 | 10 | 2 | | 1 | | 100 | | 40 | | <1 | | <1 | 1 | 20 | | 10 | <1 | | 26
May | 13 | 00 | 3 | | 3 | | <100 | | 100 | | <1 | | <1 | | 30 | | 20 | 1 | | 25
AUG | | 00 | 2 | | 1 | | <100 | | 39 | | <1 | | <1 | | 10 | | 10 | 2 | | 31 | 11 | 30 | 3 | | 3 | | <100 | | 40 | | 4 | | 2 | *** | 30 | | 20 | 2 | | DATE | COBA
DIS
SOLV
(UG
AS
(010 | LT,
ED
/L
CO) | OPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU)
01042) | DI
SO
(U
AS | PER,
S-
LVED
G/L
CU)
040) | REG
ER.
(UG
AS | ON,
FAL
COV-
ABLE
G/L
FE)
O45) | D)
SO)
(U)
AS | ON,
IS-
LVED
G/L
FE)
046) | TO
RE
ER
(U
AS | AD,
TAL
COV-
ABLE
G/L
PB) | SO:
(U | AD,
IS-
LVED
G/L
PB)
D49) | NES
TO
REC
ER
(UC
AS | PAL
COV-
ABLE | NE
D
SO
(U
AS | NGA-
SE,
IS-
LVED
G/L
MN)
056) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG)
(71900) | | NOV
03 | | 1 | 5 | | 1 | | 280 | | 92 | | 2 | | 1 | } | 20 | | 9 | < . 1 | | JAN
26 | | | 7 | | | | 1100 | | 750 | | 8 | | | | 1700 | | 9
1 7 00 | .1 | | MAY
25 | | 1 | 9 | | 3 | | 310 | | 96 | | 4 | | 4 | | 60 | | 17 | <.1 | | AUG
31 | | 2 | 12 | | 4 | | 330 | | 72 | | 4 | | 3 | | 30 | | 8 | <.1 | | | | | | | | | | | | | | | - | 1 | - | | | | ## RED RIVER OF THE NORTH BASIN ## 05112000 ROSEAU RIVER BELOW STATE DITCH 51 NEAR CARIBOU, MN--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | PAC | S
(PE # | ERCURY
DIS-
SOLVED
(UG/L
AS HG)
(1890) | ERA
(UG | AL
OV-
BLE
/L
NI) | NICKI
DIS-
SOL'
(UG,
AS 1 | VED
/L | SEL
NIU
TOT
(UG
AS
(011 | M,
AL
/L
SE) | (UG | M,
S-
VED
/L
SE) | SILV
TOT
REC
ERA
(UG
AS
(010 | AL
OV-
BLE
/L
AG) | SILV
DI
SOL
(UG
AS
(010 | S-
VED
/L
AG) | ZIN
TOT
REC
ERA
(UG
AS
(010 | AĹ
OV-
BLE
/L
ZN) | ZING
DIS
SOLY
(UG,
AS S | S-
VED
/L
ZN) | |------------|---|---|--|--|---
--------------------------------------|---|--------------------------------|--|---------------------------------|---|--------------------------------|--|--------------------------------|---|--------------------------------|---|--| | VОИ
03. | | <.1 | | 3 | | 1 | | <1 | | <1 | | <1 | | <1 | | 40 | | <4 | | JAN
26. | | <.1 | | 6 | | | | <1 | | <1 | | <1 | | <1 | | 30 | | 30 | | MAY
25 | | <.1 | | 4 | | 1 | | <1 | | <1 | | <1 | | <1 | | 40 | | 3 | | AUG
31. | | <.1 | | 6 | | 2 | | <1 | | <1 | | <1 | | <1 | | 40 | | < 4 | | DATE | TIME | T(
(U(| CB,
OTAL
3/L)
9516) | TI
LEI
POI
CHI
TO'
(UG) | PH-
HA-
NES,
LY-
LOR.
FAL
/L)
250) | TO
(U | RIN,
TAL
G/L)
330) | DA
TO
(UG | LOR-
NE,
TAL
/L)
350) | TO
(U | DD,
TAL
G/L)
360) | TO
(U | DE,
TAL
G/L)
365) | TO
(U | DT,
TAL
G/L)
370) | AZI
TO
(U | I-
NON,
TAL
G/L)
570) | DI-
ELDRIN
TOTAL
(UG/L)
(39380) | | MAR
23 | 1030 |) | <.10 | | <.10 | | <.01 | | <.10 | | <.01 | | <.01 | | <.01 | | .01 | <.01 | | MAY
25 | 1200 |) | <.10 | | <.10 | | <.01 | | <.10 | | <.01 | | <.01 | | <.01 | | .01 | <.01 | | DATE | ENDO-
SULFAN
TOTAI
(UG/I
(39388 | I, ENI
TO | ORIN,
OTAL
UG/L)
9390) | TOT
(U) | ION,
FAL
G/L)
398) | TO'
(U | PTA-
LOR,
TAL
G/L)
410) | CH
EPO
TO'
(U | PTA-
LOR
XIDE
TAL
G/L)
420) | TO
(U | DANE
TAL
G/L)
340) | TH
TO
(U | LA-
ION,
TAL
G/L)
530) | Ó
CH
TO
(U | TH-
XY-
LOR,
TAL
G/L)
480) | PA
TH
TO
(U | THYL
RA-
ION,
TAL
G/L)
600) | METHYL
TRI-
THION,
TOTAL
(UG/L)
(39790) | | MAR
23 | <.0 | 11 | <.01 | | <.01 | | <.01 | | <.01 | | <.01 | | <.01 | | <.01 | | <.01 | <.01 | | MAY
25 | <.0 | | <.01 | | <.01 | | <.01 | | <.01 | | <.01 | | <.01 | | <.01 | | <.01 | <.01 | | DAT | re (| MIREX,
TOTAL
(UG/L)
39755) | TOT | ON,
PAL
P/L) | PE;
THAI
TOT;
(UG;
(390) | NE
AL
/L) | TO
APHE
TOT
(UG
(394 | AL
/L) | THI | I-
ON
/L) | TÓT | /L) | 2, 4
TOT
(UG/
(821 | AL
L) | 2,4,
TOT
(UG
(397 | AL
/L) | SILVI
TOTA
(UG)
(397) | AL
/L) | | MAR
23. | | <.01 | < | .01 | < | .10 | | <1 | < | .01 | < | .01 | < | .01 | < | .01 | < | .01 | | MAY
25. | | <.01 | | .01 | | .10 | | <1 | | .01 | | .01 | | .01 | | .01 | | .01 | | DAT | ΓE | TIME | TOT
IN B
TOM | MA-
MA-
IAL
KG) | PCI
TOT:
IN BO
TOM:
TER:
(UG/I | AL
OT-
MA-
IAL
KG) | ALDR
TOT
IN B
TOM
TER
(UG/
(393 | AL
OT-
MA-
IAL
KG) | DAN
TOT
IN B
TOM | AL
OT-
MA-
IAL
KG) | DD
TOT
IN E
TOM
TER
(UG/ | AL
OT-
MA-
IAL
KG) | DD.
TOT
IN B
TOM
TER
(UG/
(393 | AL
OT-
MA-
IAL
KG) | DD
TOT
IN B
TOM
TER
(UG/
(393 | AL
OT-
MA-
IAL
KG) | DI-
ELDRI
TOTI
IN BO
TOM I
TERI
(UG/I | IN,
AL
OT-
MA-
IAL
KG) | | иоv
03. | | 1110 | | <1 | <: | 1.0 | | <.1 | < | 1.0 | | .6 | | <.1 | | <.1 | | <.1 | | MAY
25. | • • • | 1200 | | <1 | < | 1.0 | | <.1 | < | 1.0 | | <.1 | | <.1 | | <.1 | | <.1 | | FAC | SI
II
TC
TE
(I | ENDO-
JLFAN,
POTAL
N BOT-
DM MA-
ERIAL
JG/KG)
39389) | ENDR
TOT
IN B
TOM
TERI
(UG/ | PAL
BOT-
MA-
IAL
'KG) | HEPTOTALIN BOTTOM IN TERI (UG/1) (394 | OR,
AL
OT-
MA-
AL
KG) | HEP
CHL
EPOX
TOT.
BOT
MAT
(UG/ | OR IDE IN TOM L. KG) | LIND
TOT
IN E
TOM
TERI
(UG/ | AL
OT-
MA-
(AL
(KG) | MET
OXY
CHL
TOT.
BOT
MAT
(UG/ | OR,
IN
TOM
L.
KG) | MIR
TOT
IN B
TOM
TERI
(UG/ | AL
OT-
MA-
AL
KG) | PER-
THAN
IN
BOTT
MATER
(UG/
(818 | E
OM
IL
KG) | TOX
PHE
TOT
IN B
TOM I
TERI
(UG/1 | NE,
AL
OT-
MA-
AL
KG) | | NOV
03. | | <.1 | | <.1 | | <.1 | | < . 1 | | < . 1 | | < . 1 | | <.1 | , | .10 | , | 1.0 | | MAY 25. | | <.1 | | <.1 | | <.1 | | <.1 | | <.1 | | <.1 | | <.1 | | .00 | <1 | | ## RED RIVER OF THE NORTH BASIN 05112000 ROSEAU RIVER BELOW STATE DITCH 51 NEAR CARIBOU, MN--Continued SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | DAY | MAX | MIN | MEAN | MAX | MIN | MEAN | A | MAX | MIN | MEAN | MAX | MIN | MEAN | |---|---|---|--|---|--|--|---------
--|---|--|--|---|---| | | | OCTOBE | R | | NOVEMBE | IR | | | DECEMBE | R | | JANUAR | Y | | 1 2 | 366
368 | 342
346 | 353
363 | 364
361 | 360
355 | 362
357 | | 394
398 | 390
393 | 391
396 | | | | | 3
4
5 | 361
356
34 7 | 354
343
326 | 357
347
337 | 355
352
361 | 351
348
344 | 352
349
350 | 1 | 403
406
421 | 398
402
406 | 401
404
415 | | | | | 6 | 326 | 315 | 319 | 359 | 346 | 349 | | 421 | 415 | 418 | | | | | 7
8 | 323
344 | 313
323 | 318
334 | 354
356 | 347
351 | 350
354 | ı | 424
428 | 418
424 | 421
427 | | | | | 9
10 | 343
344 | 338
341 | 340
342 | 355
359 | 352
353 | 353
355 | 1.
1 | 435
444 | 428
436 | 432
440 | | | | | 11 | 347 | 344 | 345 | 361 | 359 | 360 | 1 | 448
448 | 444
445 | 446 | | | | | 12
13
14 | 346
349
351 | 338
342
336 | 341
344
345 | 363
369
369 | 359
362 | 361
365
368 | l | 446
453
468 | 445
446
454 | 446
450
461 | | | | | 15 | 348 | 328 | 338 | 370 | 368
368 | 369 | | 486 | 468 | 475 | | | | | 16
17 | 347
349 | 324
314 | 340
331 | 370
371 | 36 <i>7</i>
368 | 368
369 | 1 | 492
499 | 484
491 | 489
496 | | | | | 18
19 | 349
349 | 346
343 | 348
346 | 369
366 | 366
363 | 368
364 | | 507
524 | 500
506 | 504
514 | | | | | 20 | 359 | 353 | 356 | 365 | 359 | 362 | | 528 | 515 | 523 | | | | | 21
22 | 359
358 | 356
348 | 358
352 | 369
374 | 359
369 | 364
372 | į | 514
502 | 501
498 | 508
499 | | | | | 23
24 | 355
359 | 349
355 | 352
357 | 371
378 | 369
371 | 370
374 | ı | 499
497 | 496
494 | 497
496 | | | | | 25
26 | 365
360 | 359
353 | 363
356 | 384
386 | 378
384 | 382
385 | | 495
499 | 493
494 | 494
49.7 | | | | | 27
28 | 356
362 | 353
353
355 | 354
358 | 395
398 | 386
393 | 392
396 | 5 | 503 | 499 | 501 | 654
655 | 650
653 | 652
654 | | 29
30 | 372
371 | 361
362 | 367
367 | 399
398 | 396
393 | 397
396 | _ | | | | 656
655 | 655
652 | 655
654 | | 31 | 365 | 362 | 363 | | | | | | *** | | 653 | 653 | 653 | | MONTH | 372 | 313 | 348 | 399 | 344 | 367 | DAY | MAX | MIN | MEAN | MAX | MIN | MEAN | ľ | MAX | MIN | MEAN | MAX | MIN | MEAN | | DAY | MAX | MIN
FEBRUAR | MEAN
Y | MAX | MIN
MARCH | MEAN | 1 | XAM | MIN
APRIL | MEAN | MAX | MIN
MAY | MEAN | | 1 | 653 | FEBRUAR | Y
653 | 594 | MARCH | 592 | 3 | 302 | APRIL
271 | 295 | 284 | MAY
281 | 282 | | 1
2 | 653
653
654 | FEBRUAR
652
652
652 | Y
653
653
653 | 594
591
591 | MARCH
591
590
589 | 592
591
590 | | 30 2
306
2 7 2 | APRIL
271
229
173 | 295
264
209 | 284
288
289 | MAY
281
282
284 | 282
285
286 | | 1 | 653
653 | FEBRUAR
652
652 | Y
653
653 | 594
591 | MARCH
591
590 | 592
591 | | 302
306 | APRIL
271
229 | 295
264 | 284
288 | MAY
281
282 | 282 | | 1
2
3
4
5 | 653
653
654
660
670
680 | FEBRUAR
652
652
652
654
661
671 | Y
653
653
657
656
675 | 594
591
591
590
592 | MARCH
591
590
589
589
589 | 592
591
590
589
590 | . 1 | 30 2
30 6
27 2
18 6
19 5 | APRIL
271
229
173
176
190 | 295
264
209
181
192 | 284
288
289
294
296 | MAY 281 282 284 290 291 | 28 2
28 5
28 6
29 2
29 4 | | 1
2
3
4
5
6
7
8 | 653
653
654
660
670
688
6886
685 | 652
652
652
654
661
671
681
684 | Y
653
653
657
666 | 594
591
591
590
592
593
594
599 | MARCH
591
590
589
589
589
591
592 | 592
591
590
589
590 | . 1 | 30 2
30 6
27 2
18 6
19 5
20 2
20 9
22 0 | APRIL
271
229
173
176
190
199
205
213 | 295
264
209
181
192
200
207
217 | 284
288
289
294
296
297
297
299 | MAY 281 282 284 290 291 295 295 296 | 28 2
28 5
28 6
29 2
29 4
29 6
29 8 | | 1
2
3
4
5
6
7
8
9 | 653
653
6560
670
680
685
686
685
6886 | 652
652
652
654
661
671
681
684
683 | 9 653
653
653
657
666
675
683
685
684
683 | 594
591
590
592
593
594
599
603
608 | MARCH
591
590
589
589
589
591
592
594
599 | 592
591
590
589
590
591
593
597
601 | | 30 2
30 6
27 2
186
195
20 2
209
220
236
241 | APRIL 271 229 173 176 190 199 205 213 225 | 295
264
209
181
192
200
207
217
230
233 | 284
288
289
294
296
297
297
299
298 | MAY 281 282 284 290 291 295 296 296 | 28 2
28 5
28 6
29 2
29 4
29 6
29 6
29 8
29 7 | | 1
2
3
4
5
6
7
8
9
10 | 653
653
654
6660
670
6885
6885
6885
6883 | FEBRUAR
652
652
652
654
661
671
681
683
683
683 | 9 653
653
653
657
666
675
683
684
683
683 | 594
591
590
592
593
594
599
603
608
611 | MARCH
591
590
589
589
589
591
592
594
599
603 | 592
591
599
599
590
591
593
5901
605
609 | | 30 2
30 6
27 2
186
195
20 2
20 2
23 6
24 1
26 7
26 6 | APRIL 271 229 173 176 190 199 205 213 225 225 225 261 247 | 295
264
209
181
192
200
207
217
230
233
264
256 | 284
288
289
294
296
297
297
299
297
298
299 | MAY 281 282 284 290 291 295 296 296 296 297 | 28 2
28 5
28 6
29 2
29 4
29 6
29 6
29 8
29 7
29 7 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 65540
65540
670
6886
6886
6886
6883
6883
6883
6885 |
652
652
652
654
661
671
681
684
683
682
682
682 | 9 653
653
653
657
666
675
683
684
683
683
683
684 | 594
591
590
592
593
594
599
603
608
611
613
613 | MARCH
591
590
589
589
589
591
592
594
599
603
608 | 592
591
599
590
591
597
601
602
612
608 | | 30 2
306
27 2
186
195
209
220
224
241
267
2253
234 | APRIL 271 229 173 176 190 199 205 213 225 225 261 247 231 215 | 295
264
209
181
192
207
217
230
233
264
2543
222 | 284
288
289
294
296
297
2997
2997
2998
2990
2990
2990
2990
2990
2990
2990 | MAY 281 282 284 290 291 295 296 296 296 297 297 | 28 2
28 5
28 6
29 2
29 4
29 6
29 8
29 6
29 7
29 7
29 8
30 1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 653
653
6560
670
680
6885
6885
683
6884
6884 | 652
652
652
654
661
671
681
684
683
683
682
682
682 | 9 653
653
653
657
666
675
683
684
683
683
683
683
683
683 | 594
591
590
592
593
594
599
603
608
611
613
610
606 | MARCH
591
590
589
589
591
592
594
599
603
608
610
606
597 | 592
591
599
599
591
593
597
601
602
612
608
603 | | 30 2
30 6
27 2
18 6
19 5
20 2
22 20
23 6
24 1
26 7
26 6
25 3
23 4
21 9 | APRIL 271 229 173 176 190 199 205 213 225 225 261 247 231 215 208 | 295
264
209
181
192
200
207
217
233
264
256
243
222
213 | 284
288
289
294
296
297
297
299
297
298
299
300
299
300
299
305 | MAY 281 282 284 290 291 295 296 296 296 297 297 297 299 | 28 2
28 5
28 6
29 2
29 4
29 6
29 8
29 7
29 8
29 8
30 1
30 3 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 6554
6554
667
6886
6886
6886
6886
6886
6886
6886 | FEBRUAR
652
652
652
654
661
671
681
684
683
682
682
683
682 | 653
653
653
657
666
675
683
685
684
683
683
683
683
683
683
683 | 594
591
591
590
592
593
594
599
603
608
611
613
613
610
606 | MARCH 591 590 589 589 589 591 592 594 599 603 608 610 606 597 586 | 592
591
599
599
599
593
597
600
609
612
608
603
591 | | 30 2
30 6
27 2
186
195
20 2
209
2236
224 1
267
2253
2253
2219
213
215 | APRIL 271 229 173 176 190 199 205 213 225 225 261 247 231 215 208 | 295
264
209
181
192
207
217
230
233
264
254
222
213
210
208 | 284
288
2894
296
297
2997
2997
2997
2997
300
305
310
318 | 281
282
284
290
291
295
296
296
296
297
297
297
299
301 | 282
285
286
292
294
296
298
296
297
298
297
298
301
303 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 65340
655340
6670
688653
6886
6886
6886
6886
6886
6886
68 | FEBRUAR 652 652 654 661 671 681 6884 6883 682 6882 6882 6883 682 68683 | 653
653
653
657
666
675
683
683
683
683
683
683
683
683
683
684
683
683
684
683 | 594
591
590
592
593
594
599
603
608
611
613
610
606
585
573
560 | MARCH 591 590 589 589 591 599 603 601 606 597 586 572 560 556 | 5991
5990
5990
5997
5997
6005
601228
6003
5980
5980
5980
5980
5980
5980
5980
5980 | | 30 2
30 6
27 2
18 6
19 5
20 2
22 0
22 4 1
22 6 6
22 3 4
21 5
22 1 7
22 1 3
22 1 5
22 1 7
22 | APRIL 271 229 173 176 190 199 205 213 225 261 247 231 215 208 208 208 208 208 209 | 295
264
281
192
200
207
217
233
264
256
243
222
213
210
208
224
217 | 284
288
289
294
296
297
2997
299
299
300
310
312
326 | MAY 281 282 284 290 291 295 296 296 296 297 297 297 297 301 306 310 317 321 | 282
285
286
292
294
296
298
296
297
298
301
303
308
3120
324 | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | 653
653
6660
670
6886
6886
6886
6886
6886
6886 | 652
652
652
654
661
671
681
683
683
682
682
682
682
685
667
658
646 | 653
653
653
657
666
675
683
683
683
683
683
683
683
683
683
683 | 594
591
590
592
593
594
599
603
613
613
610
606
596
573
560
557 | MARCH
591
599
589
589
591
5994
603
606
610
606
597
582
5556
5551 | 591
5990
5990
5990
5993
5901
5993
6005
60128
6003
59888
5555
5555 | | 30 2
30 2
30 2
27 2
186
195
209
2206
241
267
265
34
215
227
225
2238 | APRIL 271 229 173 176 190 199 205 213 225 225 261 247 231 215 208 208 208 209 212 238 | 295
264
209
181
192
200
207
217
230
233
256
243
222
213
210
208
224
217
228 | 284
288
289
296
297
2997
299
299
300
309
318
3226
333 | MAY 281 282 284 290 291 295 296 296 296 297 297 297 297 301 306 310 317 321 327 | 282
285
286
292
294
296
298
297
297
298
301
303
3014
3120
324
330 | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | 33400 05653 33454 20578 64666 6666 6666 6666 6666 6666 6666 6 | FEBRUAR 652 652 6554 661 671 6884 6883 682 6882 6882 6883 680 6757 6586 646 6355 | 9 653
653
653
657
666
675
683
683
683
683
683
683
683
683
683
684
683
683
684
683
683
684
683
683
684
683
684
683
684
683
684
683
684
683
684
684
684
684
684
684
684
684
684
684 | 594
591
590
592
593
594
5993
608
613
610
613
610
5985
5760
557
5549 | MARCH 591 5989 589 589 591 5994 590 608 610 606 597 582 5555 544 | 5910
5910
5990
5990
5990
5990
5990
601288
59888
5955
5955
5955
5955
5955
5955 | | 30 2
30 6
27 2
18 6
19 5
20 2
22 20
23 6
24 1
26 7
26 5
3 4
21 5
22 2
23 8
24 1
26 5
26 5
27 5
28 8
29 9
20 9
20 9
20 9
20 9
20 9
20 9
20 9 | APRIL 271 229 173 176 190 199 205 213 225 225 261 247 231 215 208 208 208 208 209 212 238 240 245 | 295
264
209
181
192
200
207
217
233
266
243
2213
2108
2214
2128
240
240
240
240
240
240
240
240
240
240 | 284
288
2894
296
297
2997
2998
2993
305
318
3226
333
337
342 | 281
282
284
290
291
295
296
296
296
296
297
297
297
297
299
301
306
310
317
321
327 | 282
285
286
294
296
298
2997
298
2997
298
2901
303
303
308
314
324
333
338
340 | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | 6553400
6553400
6667
66886688
6886688
6886666
6656
6656 | FEBRUAR 652 652 654 661 671 684 6883 682 6882 6882 6883 682 6883 682 6855 | 653
653
653
657
666
675
683
685
684
683
683
683
684
683
681
678
671
662
653
640
629 | 594
591
590
592
593
599
603
608
611
613
610
606
585
577
556
549 | MARCH
591
599
589
589
591
5994
603
606
610
606
597
582
5556
5551 | 5991
5990
5990
5997
5997
5900
601228
6003
5986885
5555
5547 | | 30 2
30 6
27 2
186
195
200
223
24 1
267
265
27
215
2225
2238
241
2244 | APRIL 271 229 173 176 190 199 205 213 225 261 247 231 215 208 208 208 209 212 238 240 | 295
264
209
181
192
2007
217
233
264
253
222
213
210
208
2217
228
240
242 | 284
288
2894
296
297
2997
299
299
300
310
318
2326
333
337
340 | MAY 281 282 284 290 291 295 296 296 296 297 297 297 297 301 306 310 317 321 327 | 282
285
285
286
294
296
298
2997
298
2997
298
301
301
301
301
301
301
301
301
301
301 | | 1 2 3 4 5 6 7 8 9 1 1 1 2 3 4 5 6 7 8 9 1 1 1 2 3 4 5 1 7 1 1 8 9 2 2 2 3 4 5 2 6 | 653466666666666666666666666666666666666 | FEBRUAR 652 6552 6554 661 671 6881 6883 6882 6883 6882 6883 6882 6877 6586 646 6355 6411 605 | 653
653
653
657
666
675
688
683
688
683
688
683
688
683
681
662
671
662
671
662
671
662
671
662 | 594
591
590
592
593
594
599
608
611
613
610
6 585
577
5549
5345
557
5549
5525 | MARCH 591 5990 5899 589 591 5994 5993 608 610 606 597 5862 5555 5484 55328 |
5910999
599105
599715
599715
599715
661283
5988885
55555
5544323
5988885
5988885
5988885
5988885
5988885
5988885
5988885
5988885
5988885
5988885
5988885
5988885
5988885
5988885
5988885
59888885
5988885
59888885
5988885
5988885
5988885
5988885
5988885
5988885
5988885
5988885
5988885
5988885
5988885
5988885
5988885
5988885
5988885
5988885
5988885
5988885
5988885
5988885
5988885
5988885
5988885
5988885
5988885
5988885
5988885
5988885
5988885
5988885
5988885
5988885
5988885
5988885
5988885
5988885
5988885
5988885
5988885
5988885
5988885
5988885
5988885
5988885
5988885
5988885
5988885
5988885
598885
598885
598885
598885
598885
598885
598885
598885
598885
598885
598885
598885
598885
598885
598885
598885
598885
598885
598885
598885
598885
598885
598885
598885
598885
598885
598885
59885
59885
59886
59886
59885
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59886
59 | | 30 2
30 6
27 2
18 6
19 5
20 2
22 20
22 36
22 20
23 6
24 1
26 7
26 7
27 5
28 2
29 2
20 2
21 5
22 2
23 8
24 1
26 7
26 7
27 5
28 8
29 9
20 | APRIL 271 229 173 176 190 199 205 213 225 261 247 231 215 208 208 208 208 209 212 238 240 245 257 | 295
264
281
192
200
207
2130
233
266
243
2213
2108
2217
228
245
245
258
258
258
258
258
258
258
258
256 | 2848
2889
2996
299978
299978
2909925
2909925
2909925
33333333333333333333333333333333333 | 281
282
284
290
291
295
296
296
296
296
297
297
297
299
301
306
310
317
321
327
333
337
338
340
339 | 282
285
285
2994
2966
2996
2996
2997
2988
3013
3014
31204
3134
3134
3141
3140 | | 1 2 3 4 5 6 7 8 9 10 11 2 3 1 4 5 16 17 8 19 20 21 22 3 4 5 27 28 | 65340
65340
6660
6886
6886
6886
6886
6886
6886
68 | 652
652
6552
6651
671
681
684
683
682
6882
6882
6883
6882
6883
6883
6 | 653
653
653
657
666
675
688
688
688
688
688
688
688
688
688
68 | 591
591
5990
5992
5993
5999
6008
61133
6100
6100
6133
5575
5575
5599
5599
5599
5599
5599
55 | MARCH 591 5989 5889 5994 590 600 600 587 5055 544 5322 509 | 5991
5990
5990
5997
5990
5997
5990
6012283
5986885
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
5955
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
5955
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
5955
59555
59555
59555
59555
59555
59555
59555
59555
59555
59555
5955
5955
5955
5955
5955
5955
5955
5955
5955
5955
5955
5955
5955
5955
5955
5955
5955
5955
5955
5955
5955
5955
5955
5955
5955
5955
59 | | 306
272
306
2786
195
2200
231
2215
22238
2157
2238
2215
2228
2215
2228
2215
2228
2215
2228
2215
2228
2229
2238
2238
2238
2238 | APRIL 271 229 173 176 190 199 205 213 225 261 247 231 215 208 208 208 209 212 238 240 245 257 255 260 270 | 295
264
281
192
200
207
217
233
266
224
221
210
202
217
228
240
225
228
240
225
225
225
225
225
225
225
225
225
22 | 2848
2889
2996
299978
299978
2909925
2909925
2909925
33333333333333333333333333333333333 | MAY 281 282 284 290 291 295 296 296 297 297 297 297 301 306 310 317 327 333 337 338 340 339 | 282
285
285
2994
2966
2996
2996
2997
2988
3013
3014
31204
3134
3134
3141
3140 | | 1 2 3 4 5 6 7 8 9 10 11 2 3 1 4 5 16 17 18 19 0 21 22 3 24 25 26 27 8 29 | 653466666666666666666666666666666666666 | FEBRUAR 652 6552 6554 661 671 6881 6883 6882 6882 6883 6882 6885 6677 6586 646 6355 6111 605 600 5973 | 653
653
653
657
666
675
688
688
688
688
688
688
688
688
681
662
671
662
671
662
671
667
671
671
671
671
671
671
671
671 | 594
591
5990
5992
5994
5993
6008
6113
6106
5985
5560
557
5549
4955
518
4955
515 | MARCH
59899
55889
5999993
6010667
55555
55555
5443222
79917
34383 | 2109999 13715 92283 107223 317744
5991099 13715 92283 107233 317744 | | 306 2
307 2
2186 2
2186 2
2206 2
2206 2
2206 3
2157 2
22157 2
2215 | APRIL 271 229 173 176 190 199 205 213 225 225 225 247 231 215 208 208 208 209 212 238 249 212 238 249 212 238 245 256 257 255 260 270 274 278 | 295
264
281
192
2007
2130
233
255
242
217
228
245
255
255
267
276
280 | 2888946 779978 90925 08263 70223 533866
2888946 3779978 93233 333333 335366 | MAY 281 282 284 290 291 295 296 297 297 299 301 306 3117 327 337 337 3340 337 3340 3356 345 364 | 2856224
2856229
299867
299813
2999900
299900
299900
3333444
445660
33333333333333333333333333333333333 | | 1 2 3 4 5 6 7 8 9 10 11 2 3 1 4 5 16 17 8 19 20 21 22 3 4 5 27 28 | 653466666666666666666666666666666666666 | FEBRUAR 652 652 6554 661 671 6884 6883 6882 6882 6883 6882 6883 6882
6883 6882 6883 6882 6883 6882 6883 6882 6883 6882 | 653
653
653
657
666
675
688
688
688
688
688
688
688
688
681
678
671
662
653
640
621
614
607 | 594
591
5990
5993
5993
5993
608
611
613
6106
5985
57607
55494
5555
5555
5594
4955 | MARCH 591 5989 5889 5899 599493 6610659 6610659 67 5876661 8449881 59322 599137 | 210999999999999999999999999999999999999 | | 306
307
2186
1195
209
2236
2236
2236
2319
2258
2414
2258
2445
2270
2278
2278 | APRIL 271 229 173 176 190 199 205 213 225 247 231 215 208 208 208 209 212 238 240 245 256 257 255 260 270 274 | 295
264
281
290
2007
2130
2007
2130
2233
254
2213
2108
22178
240
2255
225
227
227
227 | 2888946 779978 90925 08263 70223 533833 333443 53366 | MAY 281 282 284 290 291 295 296 297 297 297 297 301 306 317 321 337 338 337 338 337 338 337 338 337 338 337 338 | 285624
2856299
29986
299900
299900
299900
299900
3333444
44566
33566 | RED RIVER OF THE NORTH BASIN 05112000 ROSEAU RIVER BELOW STATE DITCH 51 NEAR CARIBOU, MN--Continued SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | DAY | MAX | MIN | MEAN | MAX | MIN | MEAN | , | MAX | MIN | MEAN | МА | X | MIN | MEAN | |----------------------------------|---------------------------------|---------------------------------|---------------------------------|--|--|--|---|---------------------------------|---------------------------------|---------------------------------|----|---|----------|------| | | | JUNE | | | JULY | | | | AUGUST | | | | SEPTEMBI | ER | | 1
2
3
4
5 | 430
373
375
371
372 | 367
367
370
365
365 | 374
370
373
368
368 | 415
415
416
419
414 | 401
411
411
413
394 | 407
413
413
416
402 | | 404
405
405
405
405 | 402
404
403
404
404 | 403
404
404
404
404 | | | | | | 6
7
8
9
10 | 378
380
379
379
381 | 369
372
375
374
375 | 373
378
377
376
378 | 393
384
387
387
383 | 383
375
379
380
364 | 387
380
383
383
379 | | 405
405
405
405
405 | 404
404
404
404
404 | 404
404
404
404
404 | | | | | | 11
12
13
14
15 | 381
357
351
338
347 | 360
348
330
330
338 | 373
351
339
334
344 | 362
366
365
367
371 | 359
361
362
361
366 | 360
364
364
363
368 | | 405
405
405
405
405 | 404
404
404
404
404 | 404
404
404
404
405 | | | | | | 16
17
18
19
20 | 349
354
353
353
363 | 344
349
349
349
354 | 348
352
351
351
359 | 378
378
381
382
388 | 370
374
377
376
380 | 373
376
378
379
383 | | 405

 | 404

 | 405

 | | | | | | 21
22
23
24
25 | 365
362
364
365
363 | 360
359
358
361
359 | 363
361
361
363
361 | 388
389
397
388
379 | 383
386
387
376
375 | 386
388
390
382
377 | | | | | | | | | | 26
27
28
29
30
31 | 371
377
399
409
407 | 360
368
369
398
402 | 366
372
386
404
404 | 389
387
390
403
404
404 | 373
384
385
386
402
402 | 381
385
388
397
403
403 | |

 | | | | | | | | MONTH | 430 | 330 | 366 | 419 | 359 | 386 | | | | | | | | | TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | DAY | MAX | MIN | MEAN | |----------------------------------|------------------------------------|----------------------------------|--------------------------------------|---------------------------------|---------------------------------|------------------------------|----------------------|----------------|----------------|----------------------|----------------------|----------------| | | | OCTOBE | R | | NOVEMBE | R | | DECEMBE | R | | JANUAR | Y | | 1
2
3
4
5 | 8.5
9.0
9.0
9.0 | 6.5
7.5
8.0
8.5
8.5 | 7.5
8.0
8.5
9.0
9.0 | 4.5
4.5
5.0
6.0
6.0 | 4.0
3.5
3.5
4.5
4.5 | 4.5
4.5
5.5
5.5 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | | | | | 6
7
8
9
10 | 9.0
9.0
9.5
9.0 | 8.0
8.5
9.0
9.0 | 8.5
8.5
9.0
9.0 | 4.5
4.5
3.5
1.5 | 3.5
3.5
.0
.5 | 4.0
4.0
2.0
1.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | |

 | | | 11
12
13
14
15 | 10.0
10.0
10.0
9.5
9.0 | 9.0
10.0
9.5
9.0
8.5 | 9.5
10.0
10.0
9.0
9.0 | 1.0
2.0
1.0
4.0
4.0 | .0
.0
.0
3.0
3.5 | •5
•5
•5
3•5
4•0 | .0
.0
.0
.0 | .0
.0
.0 | .0
.0
.0 |

 |

 | | | 16
17
18
19
20 | 9.0
9.0
8.0
6.5
6.5 | 8.5
8.0
6.0
5.5
5.5 | 9.0
9.0
7.0
6.0
6.0 | 3.5
2.5
2.0
1.5 | •5
•5
•0
•0 | 1.5
.5
.5
.5 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | | | | | 21
22
23
24
25 | 5.0
3.5
2.0
1.0 | 3.5
2.0
1.0
.0 | 4.5
3.0
1.5
.5 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0
.0 | .0
.0
.0 | .0
.0
.0 | | |

 | | 26
27
28
29
30
31 | .0
1.0
2.5
4.0
5.0 | .0
1.0
2.0
4.0 | .0
.5
1.5
3.0
4.5
5.0 | .0
.0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0

 | .0
.0
 | .0
.0
 | .0
.0
.0
.0 | .0
.0
.0
.0 | .0
.0
.0 | | MONTH | 10.0 | •0 | 6.5 | 6.0 | •0 | 1.5 | | | | | | | ## RED RIVER OF THE NORTH BASIN # 05112000 ROSEAU RIVER BELOW STATE DITCH 51 NEAR CARIBOU, MN--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | DAY | MAX | MIN | MEAN | |--|--|--|--
---|--|--|--|--|--|--|--|--| | | | FEBRUAF | RY | | MARCH | | | APRII | ı | | MAY | | | 1
2
3
4
5 | .0
.0
.0 14.0
15.5
17.0
17.0 | 11.0
13.5
14.5
15.5
13.5 | 12.0
14.0
15.5
16.5
14.0 | | 6
7
8
9
10 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | •5
•5
•5
•5 | •5
•5
•5
•5 | •5
•5
•5 | 13.5
11.5
11.0
11.0 | 11.5
9.5
9.0
10.0
9.5 | 12.5
10.0
10.0
10.5
9.5 | | 11
12
13
14
15 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | 1.0
1.0
1.5
3.0 | 1.0
1.0
1.0
1.0 | 1.0
1.0
1.0 | 11.0
12.0
12.0
12.0
13.0 | 9.5
11.0
11.5
11.5
12.0 | 10.0
11.5
11.5
12.0
12.5 | | 16
17
18
19
20 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | 6.0
7.0
7.5
7.0
6.0 | 3.5
5.0
6.0
6.0 | 5.0
6.0
7.0
6.5
5.5 | 13.5
13.5
14.0
14.0 | 13.0
12.5
13.5
13.5
13.0 | 13.0
13.0
14.0
14.0 | | 21
22
23
24
25 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | 6.5
8.0
10.5
12.5
12.5 | 5.0
6.0
8.0
10.5
10.0 | 5.5
7.0
9.0
11.0 | 15.5
16.5
17.5
18.5
19.0 | 14.0
14.5
15.5
16.5
18.0 | 15.0
15.5
16.5
17.5
18.5 | | 26
27
28
29
30
31 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0
.0 | .0
.0
.0 | .0
.0
.0 | 10.0
10.5
11.0
11.0 | 8.5
8.5
9.5
10.0
9.5 | 9.0
9.5
10.0
10.5 | 20.0
21.5
22.5
23.0
21.5
18.5 | 18.0
19.5
21.0
21.5
19.0
16.5 | 19.0
20.5
22.0
22.0
20.0
17.5 | | MONTH | .0 | .0 | .0 | •0 | •0 | .0 | 12.5 | •0 | 4.5 | 23.0 | 9.0 | 14.5 | | DAY | MAX | MIN | MEAN | | | | JUNE | | | JULY | | | AUGUST | ı | | SEPTEMB | ER | | 1
2
3
4
5 | 16.5
16.5 | 14.5 | 15.0 | 23.0 | 10 5 | | 21.5 | | | | | | | , | 17.5
18.0
17.0 | 13.5
15.0
15.5
16.0 | 15.0
15.0
16.5
16.5
16.5 | 21.5
23.5
23.5
22.0 | 19.5
20.5
20.0
21.5
20.5 | 21.0
21.0
21.5
22.5
21.5 | 21.0
21.0
21.0
21.0 | 21.0
21.0
21.0
21.0
21.0 | 21.0
21.0
21.0
21.0 | | | | | 6
7
8
9 | 17.5
18.0
17.0
16.5
15.5
14.0
13.5 | 13.5
15.0
15.5 | 15.0
16.5
16.5
16.5 | 21.5
23. 5 | 20.5
20.0
21.5
20.5
20.5
20.5
19.5
20.0 | 21.0
21.5
22.5 | 21.0
21.0
21.0 | 21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0 | 21.0
21.0
21.0 | | | | | 6
7
8
9 | 17.5
18.0
17.0
16.5
15.5
14.0 | 13.5
15.0
15.5
16.0
14.0
13.0
12.5 | 15.0
16.5
16.5
16.5
16.0
15.0
13.5
13.0 | 21.5
23.5
23.5
22.0
23.0
22.5
21.0
21.5 | 20.5
20.0
21.5
20.5
20.5
20.5
19.5
20.0 | 21.0
21.5
22.5
21.5
21.5
21.5
20.5
20.5 | 21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0 | 21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0 | 21.0
21.0
21.0
21.0
21.0
21.0
21.0 | | | | | 6
7
8
9
10
11
12
13
14 | 17.5
18.0
17.0
16.5
15.5
14.0
13.5
16.0
18.0
17.5
17.5 | 13.5
15.0
15.0
16.0
14.0
13.0
12.5
12.0
15.0
15.0
17.0 | 15.0
16.5
16.5
16.0
15.0
13.5
13.0
13.5 | 21.5
23.5
22.0
23.0
22.5
21.0
21.5
21.5
23.0
24.0
23.5
23.0 | 20.5
20.0
21.5
20.5
20.5
19.5
20.0
20.0
20.0 | 21.0
21.5
22.5
21.5
21.5
20.5
20.5
21.0
21.5
23.0
22.5
21.5 | 21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0 | 21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0 | 21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0 | | | | | 6
7
8
9
10
11
12
13
14
15
16
17
18 | 17.5
18.0
17.0
16.5
15.5
14.0
13.5
16.0
18.0
17.5
19.5
20.0
20.0
19.5
19.0
18.0 | 13.5
15.0
16.0
14.0
13.0
12.5
12.0
15.5
17.5
17.5
17.5
17.5
17.5 | 15.0
16.5
16.5
16.5
16.0
15.0
13.5
13.0
13.5
16.5
18.0
18.5
18.5
18.5 | 21.5
23.5
22.0
23.5
21.0
21.5
21.5
23.0
24.0
23.5
24.0
24.0
22.0
23.0 | 20.5
20.0
21.5
20.5
20.5
19.5
20.0
20.0
20.5
22.0
20.5
22.0
21.5
22.0
21.5
22.0 | 21.0
21.5
21.5
21.5
20.5
20.5
21.0
21.5
22.5
21.5
22.5
22.5
22.5
22.5
22.5 | 21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0 | 21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0 | 21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0 | | | | | 6
77
8
9
10
11
12
13
114
15
16
17
18
19
20
21
22
23
24 | 17.5
18.0
17.0
16.5
15.5
14.0
13.5
16.0
18.0
17.5
19.5
20.0
20.0
18.0
17.5 |
13.5
15.0
16.0
14.0
13.0
12.5
15.5
17.5
17.5
17.5
16.5
16.5
16.5
16.5
17.5
17.5
16.5
16.5
16.5
17.5
17.5
17.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5 | 15.0
16.5
16.5
16.5
16.0
13.5
13.5
13.5
16.5
18.0
18.5
18.5
18.5
18.5
18.5
17.0
16.5 | 21.55
23.50
23.55
22.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05
21.05 | 20.5
20.5
20.5
20.5
19.5
20.0
20.0
20.5
22.0
22.0
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5 | 21.0
21.5
21.5
21.5
20.5
20.5
21.0
21.5
22.5
21.5
22.5
21.5
22.5
22.5
22.5 | 21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0 | 21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0 | 21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0 | | | | #### 05124480 KAWISHIWI RIVER NEAR ELY, MN (Hydrologic bench-mark station) LOCATION.--Lat 47°55'22", long 91°32'06", in SELSEL sec.24, T.63 N., R.10 W., Lake County, Hydrologic Unit 09030001, in Superior National Forest, on left bank upstream from rapids, 2 mi (3 km) upstream from South Kawishiwi River, 2.2 mi (3.5 km) southwest of Fernberg Lookout Tower and 14 mi (23 km) east of Ely. DRAINAGE AREA.--253 mi² (655 km²). #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- June 1966 to current year. GAGE.--Water-stage recorder. Altitude of gage is 1,450 ft (442 m), from topographic map. REMARKS .-- Records fair. AVERAGE DISCHARGE.--16 years, 217 ft 3 /s (6.145 m 3 /s), 11.65 in/yr (296 mm/yr). EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 1,720 ft^3/s (48.7 m^3/s) Apr. 24, 1976, gage height, 5.92 ft (1.804 m); minimum 4.5 ft^3/s (0.13 m^3/s) Jan. 30 to Feb. 2, 1977, gage height, 2.14 ft (0.652 m). EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,110 ft 3 /s (31.4 m 3 /s) May 19, gage height, 5.40 ft (1.646 m); minimum, 29 ft 3 /s (0.82 m 3 /s) Oct. 1, gage height, 2.80 ft (0.853 m). DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | | | | , | | | MEAN VA | LUES | | | | | | |--|--|--|--|---------------------------------|--|----------------------------------|------------------------------|---|--|--|---|---------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 33
33
31
31
32 | 94
94
94
92
94 | 97
96
96
96 | 76
76
75
74
74 | 61
60
60
60 | 49
49
49
48
48 | 46
45
52
53
51 | 378
412
453
502
602 | 735
696
658
626
590 | 169
163
165
165
163 | 125
118
115
113
111 | 68
69
67
63
62 | | 6
7
8
9
10 | 36
34
34
32
33 | 94
96
94
92
91 | 94
94
94
92
91 | 74
73
72
72
72 | 59
58
58
58
58 | 48
47
47
47
46 | 50
47
47
46
46 | 670
728
775
808
876 | 553
525
497
475
475 | 169
179
174
172
176 | 107
105
105
107
103 | 63
62
58
56
56 | | 11
12
13
14
15 | 33
33
37
46
47 | 91
91
92
94
94 | 91
91
90
90
88 | 71
70
70
70
69 | 57
56
56
56
55 | 48
47
50
48
48 | 46
46
45
47
51 | 946
981
1020
1050
1060 | 453
438
412
397
378 | 174
182
194
206
210 | 102
99
96
94
94 | 56
60
69
64 | | 16
17
18
19
20 | 47
54
66
68
73 | 94
94
92
92
90 | 86
85
85
84
82 | 68
68
67
67 | 55
54
54
54
53 | 47
46
46
47
46 | 58
67
67
69
73 | 1070
1070
1090
1100
1100 | 363
349
331
308
296 | 210
203
192
184
179 | 91
86
86
86
85 | 64
65
68
67
68 | | 21
22
23
24
25 | 74
77
79
81
82 | 90
90
90
90
90 | 85
85
84
82
80 | 66
65
65
64 | 53
52
52
51
51 | 46
46
45
44
44 |
76
84
99
125
152 | 1080
1050
1020
996
960 | 275
262
247
240
229 | 172
167
158
154
150 | 84
86
88
86
84 | 67
65
65
65 | | 26
27
28
29
30
31 | 82
84
86
90
91
92 | 94
99
99
97
97 | 80
79
78
78
77
77 | 64
64
63
62
62 | 50
50
50

 | 44
44
42
42
42
45 | 313 | 932
897
856
822
808
775 | 216
206
194
186
179 | 146
141
135
134
135
128 | 81
77
73
72
72
69 | 68
69
70
70
70 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 1751
56.5
92
31
.22
.26 | 2795
93.2
99
90
.37
.41 | 2703
87.2
97
77
.35
.40 | 2129
68.7
76
62
.27 | 1552
55.4
61
50
.22
.23 | 1435
46.3
50
42
.18 | 45 | 26887
867
1100
378
3.43
3.95 | 11789
393
735
179
1.55
1.73 | 5249
169
210
128
.67 | 2900
93.5
125
69
.37
.43 | 1948
64.9
70
56
.26 | | CAL YR
WTR YR | | | MEAN 214
MEAN 176 | | 1210
1100 | MIN 25
MIN 31 | CFSM .85
CFSM .70 | IN 11.47
IN 9.42 | | | | | NOTE .-- No gage-height record Dec. 25 to Mar. 9. # 05124480 KAWISHIWI RIVER NEAR ELY, MN--Continued (Hydrologic bench-mark station) #### WATER-QUALITY DATA PERIOD OF RECORD. -- Water years, 1968 to current year. PERIOD OF DAILY RECORD.--WATER TEMPERATURES: July 1966 to September 1981. REMARKS.--Letter K indicates non-ideal colony count. ## WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | DATE | TIME | FL
INS
TAN
(C | EAM- COW, COM, COM, DOW, DOW, DOW, DOW, DOW, DOW, DOW, DOW | PE- C IFIC (ON- D UCT- A) NCE (MHOS) (U | | PH
(UNITS)
(00400) | PH
LA
(UNI
(004 | i
AB
ITS) (| TEMPER-
ATURE,
AIR
(DEG C)
(00020) | A.C. | MPER-
CURE
EG C)
DO10) | ME
PR
S
(| MM
OF
G) | DXYGEN, DIS- SOLVED (MG/L) (00300) | |------------------|--|-------------------------------------|---|---|--|-------------------------------------|-------------------------------------|---|--|--------------------------------------|--|--------------------------------------|---|------------------------------------| | ОСТ
14 | 1200 | | 47 | 32 | 31 | 7.5 | | 7.1 | 10.0 | | 10.5 | | | 10.0 | | MAR
10 | 1230 | | 46 | | 29 | 7.3 | | 7.0 | •0 | | •0 | | 721 | 12.8 | | JUN
15 | 1425 | | 372 | <50 | 32 | 7.5 | | 7.3 | 18.5 | | 18.0 | | 719 | 9.1 | | AUG
04 | 1110 | | 113 | 34 | 34 | 7.5 | | 7.7 | 18.5 | | 21.5 | | 723 | 7.8 | | DATE | OXYGE
DIS
SOLV
(PEE
CEN
SATIO
ATIO | S-
VED
R-
NT
UR-
ON) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | STREP-
TOCOCCI
FECAL,
KF AGAR
(COLS.
PER
100 ML)
(31673) | HARD-
NESS
(MG/I
AS
CACO3 | BONA
(MG
AS
() CACO | S
AR-
TE
/L
3) | CALCIU
DIS-
SOLVE
(MG/I
AS CA | IM SI DI CD SOL (MG | MG) | SODI
DIS
SOLVI
(MG
AS 1 | -
ED
/L
NA) | SODIU
AD-
SORP-
TION
RATIO | -
 | | OCT
14
MAR | • | 95 | K2 | K14 | 1 | 13 | .00 | 2. | 9 | 1.4 | | 1.1 | | 1 | | 10
JUN | • | 93 | <100 | 48 | 1 | 14 4 | .0 | 3. | 3 | 1.5 | | 1.2 | • | 1 | | 15
AUG | . 1 | 102 | K2 | K150 | 1 | 13 3 | • 0 | 2. | 9 | 1.4 | | 1.0 | • | .1 | | 04 | • | 93 | к6 | K1100 | 1 | 13 1 | .0 | 3. | 1 | 1.3 | | 1.2 | | 1 | | DATE | POTA
SIU
DIS
SOLV
(MG/
AS A | JM,
S-
VED
/L
K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3)
(90410) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVE
(MG/I
AS CI | RID
DI
ED SOL
(MG
L) AS | E,
S-
VED
/L
F) | SILICA
DIS-
SOLVE
(MG/L
AS
SIO2) | AT 1
D DEG
DI
SOL
(MG | DUÉ
80
. C
S-
VED
/L) | SOLI
SUM (
CONS'
TUEN'
DI.
SOL'
(MG, | OF
TI-
TS,
S-
VED
/L) | SOLIDS
DIS-
SOLVE
(TONS
PER
DAY) | D
S | | ОСТ
14 | • | .2 | 15 | 3.1 | • | .6 | <.1 | 3. | 0 | 42 | | 21 | 5.3 | ; | | MAR
10
JUN | • | . 4 | 10 | 2.5 | • | .8 | <.1 | 3• | 5 | 41 | | 19 | 5.1 | • | | 15
AUG | • | •3 | 10 | 5.0 | | .9 | <.1 | 3• | 8 | 38 | | 21 | 38.2 | 2 | | 04 | . ‹ | <.1 | 12 | 4.0 | | .3 | <.1 | 3. | 3 | 44 | | 20 | 13.4 | | | DATE | NITF
GEN
NO2+N
TOTA
(MG/
AS N | 1,
103
L
/L
1) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N)
(00610) | NITRO
GEN,
AMMONI
DIS-
SOLVE
(MG/I
AS N)
(00608 | GEN, A MONI ORGA TOT (MG | AM-
A +
NIC
AL
/L
N) | NITRO
GEN, AM
MONIA
ORGANI
DIS.
(MG/L
AS N)
(00623 | + PHO
C PHOR
TOT
(MG | US,
AL
/L
P) | PHOR
PHOR
DI
SOL
(MG
AS | US,
S-
VED
/L
P) | CARBON
ORGANI
TOTAL
(MG/I
AS C)
(00680 | ć
, | | OCT
14
MAR | | .06 | .06 | •020 | .02 | 20 | .48 | . 4 | 8 . | 0 20 | •(| 010 | 6. | 9 | | 10
JUN | | .12 | .12 | .080 | •04 | 10 | •35 | •3 | 1 . | 010 | • (| 010 | 9. | 8 | | 15
AUG | | .20 | <.10 | •020 | •03 | 30 | .60 | .6 | 0 . | 040 | • (| 010 | 12 | | | 04 | . <. | .10 | <.10 | .010 | .01 | LO | .20 | . 2 | 0 . | 010 | <.0 | 010 | 9. | 6 | #### 05124990 FILSON CREEK NEAR ELY, MN LOCATION.--Lat 47°50'05", long 91°40'27", in SEASWA sec.24, T.61 N., R.10 W., Lake County, Hydrologic Unit 09030001, in Superior National Forest, on right bank 25 ft (7.6 m) upstream from culverts on Forest Route 181, also known as Spruce Road, 0.8 mi (1.3 km) upstream from mouth, and 10 mi (16 km) southeast of Ely. DRAINAGE AREA. -- 9.66 mi² (25.02 km²). PERIOD OF RECORD. -- October 1974 to current year. REVISED RECORDS. -- WDR MN-79-1: 1975-76, 1978. GAGE.--Water-stage recorder. Altitude of gage is 1,440 ft (439 m), from topographic map. REMARKS .-- Records fair except those for winter period, which are poor. AVERAGE DISCHARGE.--8 years, 7.48 ft 3 /s (0.212 m 3 /s), 10.52 in/yr (267 mm/yr). EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 426 ft 3 /s (12.1 m 3 /s) Sept. 13, 1980, gage height, 8.87 ft (2.704 m); no flow at times most years. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 89 ft 3 /s (2.52 m 3 /s) Apr. 23, gage height, 6.46 ft (1.969 m); maximum gage height, 7.70 ft (2.347 m) Apr. 20, from high-water mark (backwater from ice); minimum discharge, 0.15 ft 3 /s (0.004 m 3 /s) Aug. 18, gage height, 4.63 ft (1.411 m). | | | DISCHARGE | , IN CU | JBIC FEET | PER SEC | OND, WATER | YEAR OCTO | BER 1981 | TO SEPTE | MBER 1982 | | | |--|---|------------------------------------|--|------------------------------------|-----------------------------------|-----------------------------------|--|---|------------------------------------|------------------------------------|-----------------------------------|---| | DAY | OCT | NOV | DEC | JAN | FEB | MEAN VALU
MAR | DES
APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 1.4
1.7
1.3
1.4 | 8.7
7.3
7.1
6.2
6.2 | 2.2
2.1
2.1
2.1
1.9 | 1.9
1.9
1.9
1.9 | .50
.50
.50
.50 | .36
.36
.31
.36 | 2.0
1.8
1.7
1.6
1.5 | 28
25
23
22
25 | 20
19
17
15
12 | .52
.62
.97
1.2
1.6 | .71
.64
.51
.42 | •31
•36
•36
•31
•31 | | 6
7
8
9
10 | 3.8
2.2
2.1
1.4
2.5 | 5.6
4.5
4.2
4.0
3.6 | 2.1
2.1
2.1
2.1
2.1 | 1.9
1.8
1.7
1.6
1.5 | • 45
• 45
• 45
• 45 | .42
.26
.26
.26 | 1.5
1.5
1.5
1.5 | 25
27
29
28
34 | 10
8.7
7.0
6.1
7.6 | 2.9
8.7
12
13
16 | •37
•48
•55
•70
•70 | .22
.22
.22
.22 | | 11
12
13
14
15 | 2.8
2.2
4.5
11 | 3.0
3.1
3.1
2.8 | 2.1
2.0
2.0
2.0
2.0 | 1.4
1.3
1.3
1.2 | .40
.40
.40
.40 | .31
.36
.48
.42 | 1.6
1.7
2.0
3.5
5.0 | 59
65
65
61
54 | 8.3
8.5
7.9
6.6 | 17
16
14
12 | •55
•55
•48
•42 | .22
.70
1.2
1.2 | | 16
17
18
19
20 | 8.0
13
18
18
20 | 2.2
2.5
2.5
2.5
2.1 | 2.0
2.0
2.0
2.0
2.0 | 1.0
.95
.90
.85 | .40
.40
.40
.40 | .42
.36
.42
.42 | 7.0
10
15
20
30 | 49
43
43
48
45 | 6.6
5.8
4.4
3.5
2.4 | 9.0
7.3
5.4
3.9
3.2 | .31
.22
.18
.26 | 1.4
1.7
1.9
2.1
2.2 | | 21
22
23
24
25 | 18
17
15
14
13 | 2.1
2.1
1.9
2.0
2.1 | 2.0
2.0
2.0
2.0
2.0 | .75
.70
.65
.65 | .40
.36
.36
.36 | .80
.75
.75
.70 | 55
70
82
62
61 | 38
32
27
23
2 0 | 2.1
2.2
2.5
2.4
1.7 | 2.6
1.8
1.5
1.6 | .22
.55
.55
.42 | 2.2
2.2
2.2
2.1
1.7 | | 26
27
28
29
30
31 | 12
10
10
9.7
10
9.5 | 2.3
2.3
2.2
2.2
2.3 | 2.0
2.0
2.0
2.0
2.0
1.9 | .60
.60
.60
.55
.55 | •36
•36
•36
 |
.65
.60
.60
.65
.80 | 58
49
41
36
31 | 17
13
10
9.2
13 | 1.2
.99
.89
.78
.57 | 1.2
1.1
.90
.96
.92 | .42
.36
.26
.31
.31 | 1.7
1.4
1.3
1.2
1.2 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 266.4
8.59
20
1.3
.89
1.03 | 105.7
3.52
8.7
1.9
.36 | 62.9
2.03
2.2
1.9
.21
.24 | 35.65
1.15
1.9
.55
.12 | 11.67
.42
.50
.36
.04 | 15.37
.50
1.0
.26
.05 | 656.9
21.9
82
1.5
2.27
2.53 | 1019.2
32.9
65
9.2
3.41
3.92 | 197.93
6.60
20
.57
.68 | 171.16
5.52
17
.52
.57 | 13.20
.43
.71
.18
.05 | 33.87
1.13
2.2
.22
.12
.13 | | CAL YR
WTR YR | | | | | 1AX 68
1AX 82 | MIN .09
MIN .18 | CFSM .81
CFSM .74 | IN 11
IN 9 | | | | | NOTE .-- No gage-height record Jan. 12 to Mar. 1. #### 05127000 KAWISHIWI RIVER NEAR WINTON, MN LOCATION.--Lat 47°56'05", long 91°45'50", in NEANWA sec.20, T.63 N., R.11 W., Lake County, Hydrologic Unit 09030001, Superior National Forest, at powerplant of Minnesota Power & Light Co., just upstream from Fall Lake, and 1.8 mi (2.9 km) east of Winton. DRAINAGE AREA.--1,229 mi^2 (3.183 km^2). PERIOD OF RECORD. -- June 1905 to June 1907, October 1912 to September 1919 (fragmentary), September 1923 to current year. Monthly discharge only for some periods, published in WSP 1308. REVISED RECORDS. -- WDR MN-77-1: Drainage area. REMARKS .-- Records fair. Daily discharge computed from powerplant records. Flow regulated by powerplant and by Camp Six, Bald Eagle, Gabbro, Little Gabbro, Birch, White Iron, South Farm, and Garden Lakes. COOPERATION. -- Records collected by Minnesota Power & Light Co., under general supervision of Geological Survey, in connection with a Federal Power Commission project. AVERAGE DISCHARGE (unadjusted).--63 years (water years 1906, 1916-17, 1919, 1924-82), 1,028 ft 3 /s (29.11 m 3 /s), 11.36 in/yr (289 mm/yr); median of yearly mean discharges, 968 ft 3 /s (27.4 m 3 /s) 10.70 in/yr (272 mm/yr). EXTREMES FOR PERIOD OF RECORD. -- Maximum daily discharge, 16,000 ft3/s (453 m3/s) May 18, 1950; no flow at times. EXTREMES FOR CURRENT YEAR .-- Maximum daily discharge, 5,630 ft³/s (159 m³/s) May 15; no flow Mar. 31. DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 MEAN VALUES DAY OCT JUL AUG SEP NOV DEC FF.B MAR APR JUIN JAN MAY 878 484 363 792 399 604 760 484 498 . 725 24 1560 628 891 ___ .00 TOTAL MEAN MAX MIN .00 -49 -42 +154 -137 -189 -268 -570 +45 -36 +40 -92 +156 MEAN ± 1.38 CFSM ‡ .21 .16 -69 .54 .53 .31 .24 .16 3.59 1.15 4.14 .80 .97 1.28 .60 .60 .36 .27 .22 .18 .17 1.59 CFSM I 12.60 MAX 414255.00 MEAN CAL YR 1981 TOTAL MIN 32 MEAN ‡ WTR YR 1982 TOTAL 399235.00 .82 IN ‡ MEAN MAX MTN -00 CFSM I † Change in contents, equivalent in cubic feet per second, in Camp Six, Bald Eagle, Gabbro, Little Gabbro, Birch, White Iron, Farm, South Farm, and Garden Lakes. ‡ Adjusted for change in reservoir content. #### 05127500 BASSWOOD RIVER NEAR WINTON, MN #### (International gaging station) LOCATION (REVISED).--Lat 48°04'57", long 91°39'09", in SE\set sec.30, T.65 N., R.10 W., Lake County, Hydrologic Unit 09030001, in Superior National Forest, on island in Jackfish Bay of Basswood Lake, used to determine discharge at outlet [lat 48°06'21", long 91°38'51", in sec.19, T.65 N., R.10 W., on international boundary 14 mi (23 km) northeast of Winton]. DRAINAGE AREA.--1,740 \min^2 (4,510 km^2), approximately (above outlet of Basswood Lake). PERIOD OF RECORD.--March to June 1924, September 1925 to March 1928, January 1930 to current year. Monthly discharge only for some periods, published in WSP 1308. REVISED RECORDS.--WSP 955: Drainage area. WSP 1145: 1935, 1937. GAGE.--Water-stage recorder. Datum of gage is 1,296.80 ft (395.265 m), adjustment of 1928, (levels by Geodetic Survey of Canada). Prior to Oct. 27, 1938, nonrecording gages at several sites in vicinity of gage, at datum 3.0 ft (0.914 m) higher. Oct. 28, 1938, to Sept. 30, 1966, water-stage recorder at datum 3.0 ft (0.914 m) higher. REMARKS.--Records good. Some regulation by powerplant on Kawishiwi River at Winton, MN, and by many lakes located upstream from station. COOPERATION. -- This station is one of the international gaging stations maintained by the United States under agreement with Canada. AVERAGE DISCHARGE.--54 years (water years 1926, 1927, 1931-82), 1,389 ft^3/s (39.34 m^3/s), 10.84 1n/yr (275 mm/yr). EXTREMES FOR PERIOD OF RECORD. — Maximum discharge, 15,600 ft 3 /s (442 m 3 /s) May 24, 1950, gage height 9.94 ft (3.030 m), present datum; minimum, 55 ft 3 /s (1.56 m 3 /s) Nov. 18, 1976, gage height, 1.67 ft (0.509 m). EXTREMES FOR CURRENT YEAR.--Maximum discharge, 6,420 ft 3 /s (182 m 3 /s) May 22, gage height, 6.61 ft (2.015 m); minimum, 314 ft 3 /s (8.89 m 3 /s) Oct. 3, gage height, 2.52 ft (0.768 m). | | | DISCHARG | E, IN C | JBIC FEET | | D, WATER
MEAN VALUE | | TOBER 198 | 1 TO SEPTE | MBER 1982 | | | |----------------------------------|--|--------------------------------------|---------------------------------|--|---------------------------------|--|--------------------------------------|--|--------------------------------------|--|--|-----------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 328
323
318
323
328 | 1160
1180
1190
1190
1170 | 929
919
914
902
895 | 644
647
655
653 | 602
596
586
582
578 | 593
613
634
649
666 | 651
636
670
661
638 | 1630
1860
2020
2240
2560 | 4980
4810
4610
4410
4220 | 1620
1570
1620
1620
1600 | 1820
1740
1660
1620
1570 | 1020
1000
963
937
903 | | 6 | 336 | 1180 | 874 | 648 | 573 | 677 | 610 | 2840 | 4040 | 1660 | 1530 | 867 | | 7 | 336 | 1170 | 838 | 649 | 570 | 692 | 589 | 3110 | 3850 | 1670 | 1510 | 833 | | 8 | 336 | 1140 | 812 | 641 | 570 | 707 | 567 | 3350 | 3710 | 1640 | 1490 | 803 | | 9 | 332 | 1140 | 788 | 635 | 562 | 725 | 547 | 3570 | 3580 | 1640 | 1470 | 781 | | 10 | 336 | 1120 | 755 | 629 | 562 | 747 | 533 | 3880 | 3500 | 1630 | 1420 | 770 | | 11 | 341 | 1110 | 778 | 640 | 562 | 770 | 525 | 4090 | 3370 | 1590 | 1380 | 760 | | 12 | 346 | 1110 | 774 | 642 | 562 | 787 | 518 | 4340 | 3230 | 1610 | 1350 | 790 | | 13 | 360 | 1110 | 760 | 638 | 562 | 826 | 515 | 4620 | 3110 | 1640 | 1310 | 812 | | 14 | 385 | 1100 | 745 | 637 | 562 | 834 | 520 | 4880 | 3010 | 1770 | 1290 | 811 | | 15 | 390 | 1090 | 729 | 634 | 562 | 837 | 533 | 5160 | 2930 | 1930 | 1260 | 790 | | 16 | 400 | 1080 | 710 | 631 | 562 | 836 | 549 | 5450 | 2820 | 2050 | 1250 | 777 | | 17 | 430 | 1060 | 692 | 629 | 562 | 840 | 578 | 5640 | 2730 | 2160 | 1240 | 795 | | 18 | 460 | 1060 | 682 | 623 | 562 | 858 | 610 | 5900 | 2610 | 2230 | 1260 | 788 | | 19 | 495 | 1040 | 673 | 627 | 562 | 861 | 638 | 6160 | 2490 | 2300 | 1270 | 781 | | 20 | 538 | 1020 | 670 | 623 | 562 | 862 | 664 | 6300 | 2370 | 2330 | 1240 | 773 | | 21 | 579 | 1010 | 678 | 618 | 562 | 851 | 709 | 6380 | 2270 | 2370 | 1230 | 761 | | 22 | 650 | 1010 | 669 | 615 | 562 | 837 | 763 | 6400 | 2170 | 2380 | 1270 | 754 | | 23 | 732 | 993 | 663 | 628 | 562 | 821 | 834 | 6380 | 2080 | 2360 | 1270 | 761 | | 24 | 823 | 979 | 657 | 628 | 562 | 790 | 931 | 6300 | 2030 | 2320 | 1260 | 765 | | 25 | 880 | 978 | 650 | 628 | 562 | 772 | 1040 | 6180 | 2000 | 2250 | 1220 | 774 | | 26
27
28
29
30
31 | 947
982
1040
1080
1120
1140 | 994
980
971
959
946 | 646
648
648
647
646 | 628
628
628
625
619
611 | 563
570
581
 | 756
739
717
691
680
672 | 1150
1240
1300
1370
1480 | 6050
5890
5740
5590
5440
5210 | 1930
1850
1790
1740
1670 | 2170
2080
2000
1960
1930
1870 | 1190
1140
1120
1100
1070
1050 | 781
800
819
830
860 | | TOTAL MEAN MAX MIN CFSM IN. | 17414 | 32240 | 23039 | 19634 | 15925 | 23340 | 22569 | 145160 | 89910 | 59570 | 41600 | 24659 | | | 562 | 1075 | 743 | 633 | 569 | 753 | 752 | 4683 | 2997 | 1922 | 1342 | 822 | | | 1140 | 1190 | 929 | 655 | 602 | 862 | 1480 | 6400 | 4980 | 2380 | 1820 | 1020 | | | 318 | 946 | 646 | 611 | 562 | 593 | 515 | 1630 | 1670 | 1570 | 1050 | 754 | | | •32 | .62 | •43 | •36 | •33 | •43 | .43 | 2.69 | 1.72 | 1.11 | •77 | •47 | | | •37 | .69 | •49 | •42 | •34 | •50 | .48 | 3.10 | 1.92 | 1.27 | •89 | •53 | | | 1981 TOTA
1982 TOTA | | | | IAX 6810
IAX 6400 | MIN 297
MIN 318 | CFSM
CFSM | | 12.05
11.01 | | | , | #### 05128000 NAMAKAN RIVER AT OUTLET OF LAC LA CROIX, ONTARIO (International gaging station) LOCATION (REVISED).--Lat 48°21'14", long 92°13'01", at Campbell's Camp, on Lac La Croix Lake, used to determine discharge at outlet [Lat 48°23'00", long 92°10'40", 2.5 mi (4.0 km) east of Campbell's Camp]. DRAINAGE AREA.--5,170 mi² (13,390 km²). PERIOD OF RECORD. -- September 1921 to January 1922, April 1922 to current year, in reports of Geological Survey. Monthly discharge only for some periods, published in WSP 1308. August 1921 to current year, in reports of Water Survey of Canada. GAGE.--Water-stage recorder. Gage readings have been reduced to elevations, United States and Canada Boundary Survey datum. Prior to October 1933, nonrecording gages at various sites on Lac la Croix. October 1933 to Mar. 13, 1963, nonrecording gage at present site and datum. REMARKS .-- Records excellent. COOPERATION . -- This station is maintained by Canada under agreement with the United States. AVERAGE DISCHARGE.--60 years (water years 1923-82),
3,805 ft³/s (107.8 m³/s), 9.99 1n/yr (254 mm/yr). EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 28,200 ft 3 /s (799 m 3 /s) May 31 to June 2, 1950, elevation, 1,193.30 ft (363.718 m); minimum, 535 ft 3 /s (15.2 m 3 /s) at times in February, March and April 1924, elevation, 1,181.50 ft (360.121 m). EXTREMES FOR CURRENT YEAR.--Maximum discharge, 12,400 ft 3 /s (351 m 3 /s) May 27-30, elevation, 1,188.20 ft (362.163 m) May 28; minimum, 1,350 ft 3 /s (38.2 m 3 /s) Oct. 8, elevation, 1,182.55 ft (360.441 m). DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 MEAN VALUES OCT NOV DEC JAN FEB MAR APR MAY JUN JUL | DAY | OCT | NOA | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|--|---|--|--|--------------------------------------|--|--------------------------------------|--|---|--|--|--------------------------------------| | 1 | 1380 | 1550 | 2030 | 1750 | 1650 | 1450 | 1640 | 3900 | 12000 | 5960 | 7420 | 3780 | | 2 | 1380 | 1570 | 2020 | 1760 | 1640 | 1450 | 1650 | 4100 | 12000 | 5810 | 7280 | 3730 | | 3 | 1400 | 1600 | 2030 | 1770 | 1620 | 1440 | 1810 | 4300 | 11800 | 5750 | 7080 | 3670 | | 4 | 1400 | 1610 | 2020 | 1750 | 1610 | 1430 | 1850 | 4550 | 11600 | 5700 | 6930 | 3630 | | 5 | 1390 | 1610 | 2020 | 1750 | 1600 | 1430 | 1850 | 4820 | 11300 | 5660 | 6740 | 3560 | | 6 | 1380 | 1660 | 2020 | 1730 | 1600 | 1420 | 1850 | 5100 | 11200 | 5760 | 6590 | 3490 | | 7 | 1370 | 1690 | 1990 | 1730 | 1590 | 1410 | 1850 | 5320 | 10900 | 5760 | 6440 | 3410 | | 8 | 1370 | 1670 | 1970 | 1720 | 1580 | 1410 | 1850 | 5620 | 10700 | 5830 | 6250 | 3330 | | 9 | 1390 | 1710 | 1980 | 1700 | 1570 | 1410 | 1840 | 5960 | 10500 | 5950 | 6140 | 3270 | | 10 | 1400 | 1730 | 1970 | 1690 | 1570 | 1420 | 1840 | 6330 | 10300 | 6020 | 6010 | 3240 | | 11 | 1410 | 1770 | 1960 | 1700 | 1560 | 1440 | 1840 | 6640 | 10200 | 6090 | 5880 | 3190 | | 12 | 1410 | 1800 | 1970 | 1690 | 1550 | 1450 | 1840 | 7040 | 9960 | 6250 | 5750 | 3220 | | 13 | 1410 | 1820 | 1960 | 1680 | 1550 | 1460 | 1840 | 7480 | 9730 | 6400 | 5590 | 3250 | | 14 | 1410 | 1850 | 1940 | 1680 | 1550 | 1480 | 1840 | 7950 | 9570 | 6690 | 5460 | 3210 | | 15 | 1400 | 1860 | 1930 | 1660 | 1540 | 1490 | 1850 | 8400 | 9330 | 6900 | 5330 | 3150 | | 16 | 1390 | 1870 | 1930 | 1650 | 1540 | 1480 | 1860 | 8830 | 9090 | 7110 | 5180 | 3070 | | 17 | 1410 | 1880 | 1910 | 1650 | 1530 | 1480 | 1880 | 9220 | 8870 | 7250 | 5050 | 3070 | | 18 | 1400 | 1920 | 1890 | 1640 | 1520 | 1500 | 1910 | 9660 | 8640 | 7360 | 4970 | 3040 | | 19 | 1430 | 1930 | 1880 | 1640 | 1510 | 1510 | 1940 | 10100 | 8400 | 7570 | 4850 | 2990 | | 20 | 1440 | 1930 | 1870 | 1630 | 1490 | 1520 | 1970 | 10600 | 8170 | 7710 | 4740 | 2950 | | 21 | 1440 | 1950 | 1880 | 1630 | 1480 | 1520 | 2020 | 11000 | 7970 | 7820 | 4660 | 2910 | | 22 | 1440 | 1950 | 1870 | 1640 | 1480 | 1530 | 2090 | 11300 | 7750 | 7950 | 4650 | 2850 | | 23 | 1440 | 1950 | 1870 | 1690 | 1480 | 1540 | 2200 | 11700 | 7450 | 8030 | 4560 | 2820 | | 24 | 1460 | 1940 | 1850 | 1700 | 1470 | 1540 | 2360 | 11900 | 7230 | 8040 | 4460 | 2780 | | 25 | 1430 | 1970 | 1830 | 1690 | 1460 | 1560 | 2560 | 12100 | 7090 | 8040 | 4370 | 2750 | | 26
27
28
29
30
31 | 1470
1470
1510
1530
1540
1520 | 2020
1990
2030
2040
2050 | 1800
1800
1790
1790
1780
1770 | 1690
1690
1670
1670
1660
1650 | 1460
1450
1460
 | 1560
1570
1580
1580
1610
1610 | 2810
3060
3290
3510
3700 | 12200
12400
12400
12400
12400
12200 | 6860
6640
6480
6310
6120 | 8010
7950
7870
7760
7660
7560 | 4280
4120
4070
4010
3910
3860 | 2700
2670
2710
2650
2600 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 44220
1426
1540
1370
.28 | 54920
1831
2050
1550
•35
•40 | 59320
1914
2030
1770
•37
•43 | 52350
1689
1770
1630
•33
•38 | 43110
1540
1650
1450
.30 | 46280
1493
1610
1410
•29
•33 | 64400
2147
3700
1640
.42 | 267920
8643
12400
3900
1.67
1.93 | 274160
9139
12000
6120
1.77
1.97 | 214220
6910
8040
5660
1.34
1.54 | 166630
5375
7420
3860
1.04
1.20 | 93690
3123
3780
2600
.60 | | CAL YR
WTR YR | | | 30 MEAN
20 MEAN | 4010
3784 | MAX 130
MAX 124 | | 1330
1370 | CFSM .78
CFSM .73 | IN 10.53
IN 9.94 | | | | #### 05128200 VERMILION LAKE NEAR SOUDAN, MN - LOCATION.--Lat 47°49'52", long 92°16'20", in SW\sE\sec.20, T.62 N., R.15 W., St. Louis County, Hydrologic Unit 09030002, on south shore of Vermilion Lake, 2 mi (3.2 km) northwest of Soudan. - PERIOD OF RECORD. --October 1913 to July 1915, July 1941 to November 1942, June 1946 to current year (fragmentary during 1947). - GAGE.--Water-stage recorder. Datum of gage is 1,355.10 ft (413.034 m) National Geodetic Vertical Datum of 1929. October 1913 to July 1915, nonrecording gage at Tower, 2 mi (3.2 km) southwest of present gage, at datum about 1,354.60 ft (412.882 m). July 1941 to November 1942, and June 1946 to June 1951, nonrecording gage approximately 13 mi (20.9 km) northwest at Vermilion Dam near Tower, at same datum. All gage readings have been reduced to elevations NGVD. - EXTREMES FOR PERIOD OF RECORD.--Maximum elevation observed, 1,359.52 ft (414.382 m) May 16, 1950; minimum observed, 1,356.02 ft (413.315 m) Jan. 29, 1942; minimum 1,355.96 ft (413.297 m) Dec. 14, 1976, result of wind action. - EXTREMES OUTSIDE PERIOD OF RECORD.--Elevation on June 6, 1913, was 1,359.94 ft (414.510 m), determined from reference point set by local observers. - EXTREMES FOR CURRENT YEAR.--Maximum elevation, not determined; maximum daily, 1,358.60 ft (414.101 m) May 20-22; minimum, 1,356.87 ft (413.574 m) Oct. 3; minimum daily, 1,356.90 ft (413.583 m) Oct. 3. #### MONTHEND ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | Oct. 31 1357.38 | Feb. 24 1357.07 | June 30 1357.77 | |-----------------|-----------------|-----------------| | Nov. 30 1357.23 | Mar. 31 1357.05 | July 31 1357.59 | | Dec. 31 1357.15 | Apr. 30 1358.05 | Aug. 31 1357.25 | | Jan. 31 1357.15 | May 31 1358.41 | Sept.30 1357.30 | NOTE.--Elevations other than those shown above are available. #### 05129115 VERMILION RIVER NEAR CRANE LAKE, MN LOCATION.--Lat 48°15'53", long 92°33'57", in NERNER sec. 30, T.67 N., R.17 W., St. Louis County, Hydrologic Unit 09030002, in Superior National Forest, on left bank 350 ft (107 m) downstream from bridge on Forest Route 491, 3.5 mi (5.6 km) upstream from mouth, and 3.5 mi (5.6 km) west of village of Crane Lake. PERIOD OF RECORD .-- August 1979 to current year. GAGE.--Water-stage recorder. Altitude of gage is 1,180 ft (360 m), from topographic map. REMARKS .-- Records fair. EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 3,100 ft 3 /s (87.8 m 3 /s) Apr. 25, 1982, gage height, 13.04 ft (3.975 m); minimum, 38 ft 3 /s (1.08 m 3 /s) Aug. 13, 14, 1980, gage height, 3.68 ft (1.122 m). EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood of April 1979 reached a stage of 15.15 ft (4.618 m), from high-water mark, discharge, about 4,600 ft³/s (130 m³/s). EXTREMES FOR CURRENT YEAR.—Maximum discharge, 3,100 ft 3 /s (87.8 m 3 /s) Apr. 25, gage height, 13.04 ft (3.975 m); minimum, 127 ft 3 /s (3.60 m 3 /s) Oct. 1, gage height, 4.67 ft (1.423 m). DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 519 596 288 2630 339 879 867 28**9** 24 20 28 2780 220 512 284 689 175 ___ ___ TOTAL 2830 MEAN 656 MAX 482 MIN CAL YR 1981 TOTAL 235488 MEAN 645 MAX 2370 MIN 106 WTR YR 1982 TOTAL 231586 MEAN 634 MAX 3090 MIN 142 NOTE; No gage-height record Jan. 17 to Feb. 28. # 05129400 RAINY LAKE NEAR FORT FRANCES, ONTARIO (International gaging station) - LOCATION.--Lat 48°38'30", long 93°20'00", at Five Mile dock, approximately 5 mi (8 km) northeast of town of Fort - PERIOD OF RECORD.--January 1910 to September 1917 and October 1934 to current year, in reports of Geological Survey. August 1911 to September 1979, in reports of Water Survey of Canada. Prior to October 1949, published as "at Ranier, Minn.", and as "at Fort Frances, Ontario" October 1949 to September 1964. - GAGE.--Water-stage recorder. Datum of gage is at National Geodetic Vertical Datum of 1929 (United States and Canadian Boundary Survey). January 1910 to December 1949, nonrecording gage 3 mi (5 km) northeast at Ranier, Minn., at same datum. January 1950 to October 1964, water-stage recorder on Government dock at Pither's Point at Fort Frances and supplementary gage in town pumping station, 0.5 mi (0.8 km) south, used during winter months, at same datum. - COOPERATION. -- This station is one of the international gaging stations maintained by Canada under agreement with the United States. - EXTREMES FOR PERIOD OF RECORD.—Maximum elevation observed, 1,112.97 ft (339.233 m) July 5, 1950; minimum observed, 1,101.26 ft (335.664 m) Apr. 17, 1923, Apr. 2, 1930. - EXTREMES FOR CURRENT YEAR.--Maximum elevation, 1,108.31 ft (337.813 m) July 5, maximum daily elevation, 1,108.16 ft (337.767 m) July 10; minimum, 1,104.44 ft (336.633 m) Mar. 31; minimum daily, 1,104.56 ft (336.670 m) Apr. 1. #### MONTHEND ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | Oct. 31 1107.24 | Feb. 28 1105.55 | June 30 1107.75 | |-----------------|-----------------|-----------------| | Nov. 30 1107.21 | Mar. 31 1104.58 | July 31 1107.98 | | Dec. 31 1106.65 | Apr. 30
1105.74 | Aug. 31 1107.50 | | Jan. 31 1106.02 | May 31 1108.05 | Sept.30 1107.44 | NOTE. -- Elevations other than those shown are available. #### 05130500 STURGEON RIVER NEAR CHISHOLM, MN LOCATION.--Lat 47°40'25", long 92°54'00", in NEANWA sec.20, T.60 N., R.20 W., St. Louis County, Hydrologic Unit 09030005, on left bank 1,000 ft (305 m) upstream from highway bridge, 0.6 mi (1.0 km) downstream from East Branch Sturgeon River, and 11.5 mi (18.5 km) north of Chisholm. DRAINAGE AREA.--187 mi² (484 km²). PERIOD OF RECORD. -- August 1942 to current year. REVISED RECORDS.--WSP 1438: 1946. GAGE.--Water-stage recorder. Datum of gage is 1,305.7 ft (397.977 m) National Geodetic Vertical Datum of 1929. Prior to Aug. 24, 1944, nonrecording gage at site 1,000 ft (305 m) downstream at different datum. Aug. 25, 1944, to Sept. 30, 1975, at present site at datum 1.00 ft (0.305 m) higher. REMARKS .-- Records good except those for winter period, which are fair. AVERAGE DISCHARGE.--40 years, 124 ft 3 /s (3.512 m 3 /s), 9.00 in/yr (229 mm/yr). EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,630 ft³/s (103 m³/s) May 7, 1950, gage height, 7.41 ft (2.259 m), present datum, from rating curve extended above 1,600 ft³/s (45.3 m³/s) on basis of slope-area measurement of peak flow; minimum daily, 3.8 ft³/s (0.11 m³/s) Jan. 31 to Feb. 3, 1977. EXTREMES FOR CURRENT YEAR.--Peak discharge above base of 500 ft 3 /s (14.2 m 3 /s) and maximum (*): | | | Disch | arge | Gage | height | |-------------------|--------------|-------------------------------|-----------------|----------------|----------------| | Date | Time | Disch
(ft ³ /s) | (\bar{m}^3/s) | (ft) | (m) | | Apr. 18
May 16 | 2130
1430 | *1220
743 | 34.6
21.0 | *a5.34
4.32 | 1.628
1.317 | Minimum daily discharge, 19 ft 3 /s (0.54 m 3 /s) Feb. 21 to Mar. 29; minimum gage height, 1.56 ft (0.475 m) Mar. 17, 19-25. a Ice jam. | | | DISCHARG | E, IN CU | BIC FEET | PER SECON | D, WATER
EAN VALU | YEAR OCTO | BER 1981 | TO SEPTEM | BER 1982 | | | |----------------------------------|--|--|----------------------------------|---------------------------------------|--------------------------------|----------------------------------|--|--|--|---|---|----------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 59
75
76
106
127 | 138
135
129
125
126 | 78
77
76
76
71 | 33
32
31
31
30 | 20
20
20
20
20 | 19
19
19
19 | 46
52
60
64
66 | 382
348
321
327
426 | 225
210
194
180
168 | 67
61
62
82
13 4 | 106
111
112
91
84 | 60
91
88
78
67 | | 6
7
8
9 | 155
165
158
144
139 | 123
120
118
116
114 | 74
72
69
61
63 | 29
29
28
27
27 | 20
20
20
20
20 | 19
19
19
19 | 67
68
70
70
70 | 468
468
419
367
357 | 155
148
141
142
174 | 200
256
271
266
249 | 78
82
83
78
71 | 60
56
53
52
50 | | 11
12
13
14
15 | 134
129
134
144
143 | 112
110
108
106
104 | 64
64
66
65
59 | 26
26
25
25
24 | 20
20
20
20
20 | 19
19
19
19 | 70
70
75
100
220 | 391
430
479
551
688 | 178
177
163
152
170 | 229
217
242
267
260 | 62
56
95
106
107 | 51
74
128
137
136 | | 16
17
18
19
20 | 143
170
218
239
261 | 102
100
98
97
95 | 54
52
51
49
47 | 24
24
23
23
23 | 20
20
20
20
20 | 19
19
19
19 | 450
780
1120
1160
1130 | 730
699
699
716
688 | 171
156
142
137
130 | 293
255
222
1 91
166 | 96
82
76
79
73 | 123
127
129
124
120 | | 21
22
23
24
25 | 247
231
212
191
174 | 93
92
90
88
87 | 46
44
43
42
40 | 22
22
22
22
21 | 19
19
19
19 | 19
19
19
19 | 995
893
821
787
76 7 | 618
530
461
394
355 | 128
120
109
97
86 | 175
151
136
138
135 | 70
95
105
99
95 | 111
102
99
96
94 | | 26
27
28
29
30
31 | 162
156
149
146
144
142 | 85
84
82
81
80 | 39
38
37
36
35
34 | 21
21
21
21
21
21 | 19
19
19
 | 19
19
19
19
25
32 | 724
650
568
486
432 | 325
292
262
247
242
235 | 78
71
65
70
70 | 120
112
105
100
104
107 | 84
75
68
63
58
57 | 90
86
84
90
89 | | TOTAL MEAN MAX MIN CFSM IN. | 4873
157
261
59
.84 | 3138
105
138
80
•56
•62 | 1722
55.5
78
34
.30 | 775
25.0
33
21
.13
.15 | 552
19.7
20
19
.11 | 608
19.6
32
19
.11 | 12931
431
1160
46
2.31
2.57 | 13915
449
730
235
2.40
2.77 | 4207
140
225
65
•75
•84 | 5373
173
293
61
•93
1•07 | 2597
83.8
112
56
.45
.52 | 2745
91.5
137
50
.49 | CAL YR 1981 TOTAL 42644 MEAN 117 MAX 844 MIN 22 CFSM .63 IN 8.48 WTR YR 1982 TOTAL 53436 MEAN 146 MAX 1160 MIN 19 CFSM .78 IN 10.63 #### 05131500 LITTLE FORK RIVER AT LITTLE FORK, MN LOCATION.--Lat 48°23'45", long 93°32'57", in NE\SE\ sec.9, T.68 N., R.25 W., Koochiching County, Hydrologic Unit 09030005, on right bank at town of Littlefork, 0.9 mi (1.4 km) upstream from bridge on State Highway 217, 2.8 mi (4.5 km) upstream from Beaver Creek, and 19 mi (31 km) upstream from mouth. DRAINAGE AREA.--1,730 mi² (4,481 km²), approximately. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--June to November 1909, April to November 1910, April 1911 to June 1917, September 1917, October 1917 to March 1919 (gage heights only), June 1928 to current year. REVISED RECORDS.--WSP 955: Drainage area. WSP 1508: 1913, 1916, 1928-32, 1934. WRD MN-74: 1963. GAGE.--Water-stage recorder. Datum of gage is 1,083.59 ft (330.278 m) National Geodetic Vertical Datum of 1929. June 23, 1909, to Mar. 4, 1917, nonrecording gage and July 21, 1937, to Oct. 23, 1979, water-stage recorder at site 1.2 mi (1.9 km) downstream at datum 10.53 ft (3.210 m) lower; Mar. 5 to Sept. 30, 1917, and June 22, 1928, to July 20, 1937, nonrecording gage at site 1.18 mi (1.9 km) downstream at datum 10.53 ft (3.210 m) lower. REMARKS .-- Records good except those for winter period, which are fair. AVERAGE DISCHARGE.--59 years (water years 1912-16, 1929-82), 1,051 ft^3/s (29.76 m^3/s), 8.25 in/yr (210 mm/yr). EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 25,000 ft³/s (708 m³/s) Apr. 18, 1916, May 11, 1950, gage height, 37.00 ft (11.278 m); minimum observed, 21 ft³/s (0.59 m³/s) Aug. 26, 27, 1936. EXTREMES FOR CURRENT YEAR.--Maximum discharge, about 12,800 ft³/s (362 m³/s) Apr. 21, gage height, 18.09 ft (5.514m)(back water from ice); minimum daily, 147 ft³/s (4.16 m³/s) Jan. 29 to Mar. 28; minimum gage height, 2.53 ft (0.711 m) Mar. 11, 12. | | | DISCHARGE | , IN CU | BIC FEET | PER SECOND | , WATER | YEAR OCTO | OBER 1981 | TO SEPTE | MBER 1982 | | | |----------------------------------|--|---|---|--|----------------------------------|--|--|---|--|---|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 394
658
718
792
1190 | 1210
1130
1050
978
918 | 387
415
393
365
362 | 210
210
205
200
200 | 147
147
147
147
147 | 147
147
147
147
147 | 180
200
250
300
380 | 4490
4040
3610
3370
4180 | 1800
1690
1560
1460
1350 | 585
558
536
495
500 | 390
373
369
361
345 | 288
270
256
252
277 | | 6
7
8
9
10 | 1920
2290
2230
2030
1860 | 874
818
780
726
688 | 323
309
319
307
269 | 200
195
195
190
190 | 147
147
147
147
147 | 147
147
147
147
147 | 425
595
665
645
600 | 4960
4840
4460
3960
3560 | 1240
1180
1140
1080
1480 | 568
634
860
1050
1140 | 349
349
325
294
302 | 313
313
302
288
266 | | 11
12
13
14
15 | 1770
1650
1580
1540
1540 | 664
640
624
607
590 | 250
287
332
337
328 | 185
185
180
180
175 | 147
147
147
147
147 | 147
147
147
147
147 | 555
530
525
550
925 | 4020
4510
4400
4740
6220 | 2200
2190
2060
1860
1650 | 1140
1120
1060
1230
1210 | 329
309
294
298
288 | 235
232
246
246
274 | | 16
17
18
19
20 | 1570
1520
1790
2680
2880 | 585
568
541
513
497 | 318
304
290
285
275 | 175
170
170
165
165 | 147
147
147
147
147 | 147
147
147
147
147 | 2960
6490
8380
9860
11300 | 8270
8780
8560
9770
11000 | 1460
1360
1350
1270
1170 | 1200
1240
1180
1040
895 |
277
369
394
369
329 | 455
624
646
634
652 | | 21
22
23
24
25 | 2730
2520
2280
2030
1810 | 381
327
357
426
495 | 265
255
250
245
240 | 160
160
155
155
155 | 147
147
147
147
147 | 147
147
147
147
147 | 12500
11500
11000
10100
9870 | 10000
7850
6170
5020
4210 | 1080
994
962
918
839 | 786
718
652
640
602 | 309
313
317
321
398 | 664
652
580
520 | | 26
27
28
29
30
31 | 1570
1440
1370
1320
1300
1270 | 485
440
426
411
418 | 235
230
225
220
215
210 | 150
150
150
147
147
147 | 147
147
147
 | 147
147
147
150
158
170 | 9230
7830
6660
5750
5030 | 3510
3010
2630
2340
2130
1940 | 766
712
646
612
602 | 539
505
479
454
432
408 | 421
398
398
377
333
309 | 500
475
470
460
440 | | TOTAL MEAN MAX MIN CFSM IN. | 52242
1685
2880
394
•97
1•12 | 19167
639
1210
327
•37
•41 | 9045
292
415
210
.17
.19 | 5421
175
210
147
.10 | 4116
147
147
147
.09 | 4594
148
170
147
.09 | 135785
4526
12500
180
2.62
2.92 | 160550
5179
11000
1940
2.99
3.45 | 38681
1289
2200
602
.75
.83 | 24456
789
1240
408
•46
•53 | 10607
342
421
277
.20
.23 | 12454
415
664
232
•24
•27 | | | 1981 TOTA
1982 TOTA | | ME AN
ME AN | | AX 6090
AX 12500 | MIN 10
MIN 14 | | .60 IN .76 IN | 8.16
10.26 | | | | # 05131500 LITTLE FORK RIVER AT LITTLEFORK, MN--Continued (National stream-quality accounting network station) #### WATER-QUALITY RECORDS 1 PERIOD OF RECORD.--Water years 1967, 1969, 1971, 1973 to current year. PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: October 1980 to September 1981. WATER TEMPERATURES: October 1980 to September 1981. INSTRUMENTATION. -- Water-quality minimonitor since October 1980. REMARKS.--Letter K indicates non-ideal colony count. EXTREMES FOR PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE: Maximum, 299 micromhos Feb. 21, 1981; minimum, 99 micromhos Apr. 30, May 1, 1981. WATER TEMPERATURES: Maximum, 26.0°C July 7, 8, 12-14, 1981; minimum, 0.0°C several days during winter period. EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum, 255 micromhos Mar. 29, 30; minimum, 82 micromhos Apr. 19. WATER TEMPERATURES: Maximum, 25.5°C July 6, Aug. 5, 7; minimum, 0.0°C several days during winter period. WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | DATE | TIME | DIS-
CHARGE,
IN
CUBIC
FEET
PER
SECOND
(00060) | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS)
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS)
(00095) | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(UMHOS)
(90095) | PH
(UNITS)
(00400) | PH
LAB
(UNITS)
(00403) | TEMPER-
ATURE,
AIR
(DEG C)
(00020) | TEMPER-
ATURE
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | |------------------|--|--|---|---|---|---|--|---|--|---| | OCT
Ol
DEC | 1600 | | 435 | 190 | 172 | 8.3 | 7.6 | 5.0 | 7.5 | 735 | | 14 | 1630 | | 337 | 160 | 150 | 7.8 | 7.6 | -9.0 | .0 | 734 | | FEB
02
MAY | 0830 | 145 | | 230 | 553 | 7.3 | 7.5 | -20.0 | .0 | 737 | | 20 | 0825 | | 11100 | 114 | 104 | 7.9 | 7.4 | 11.0 | 13.5 | 733 | | JUL
21 | 1130 | | 780 | 130 | 124 | 7.7 | 7.6 | 20.0 | 22.0 | 731 | | SEP
13 | 1400 | | 238 | 180 | 192 | 7.7 | 7.9 | 14.0 | 17.0 | 732 | | DATE | TUR-
BID-
ITY
(NTU)
(00076) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | STREP-
TOCOCCI
FECAL,
KF AGAR
(COLS.
PER
100 ML)
(31673) | HARD-
NESS
(MG/L
AS
CACO3)
(00900) | HARD-
NESS
NONCAR-
BONATE
(MG/L
AS
CACO3)
(95902) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | | OCT
01
DEC | 8.5 | 11.1 | 96 | 83 | 250 | 92 | 12 | 24 | 7.9 | 1.5 | | 14 | 5.5 | 13.6 | 97 | К3 | 44 | 81 | 11 | 21 | 7.0 | 3.2 | | FEB
02
MAY | 7.4 | 10.2 | 72 | К2 | K11 | 109 | 9.0 | 28 | 9.6 | 4.5 | | 20
JUL | 90 | 8.3 | 83 | 190 | K1500 | 59 | •00 | 17 | 4.1 | 2.0 | | 21
SEP | 7.2 | 7.7 | 92 | K10 | 30 | 64 | 7.0 | 17 | 5.3 | 2.5 | | 13 | 12 | 8.7 | 94 | K15 | 150 | 88 | 5.0 | 23 | 7.4 | 3.8 | | DATE | SODIUM
AD-
SORP-
TION
RATIO
(00931) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3)
(90410) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY)
(70302) | | OCT
01 | .1 | 1.5 | 80 | 7.0 | 2.0 | .1 | 6.8; | 142 | 100 | 167 | | DEC
14 | .2 | 1.2 | 70 | 8.8 | 2.3 | <.1 | 7.4 | 126 | 93 | 115 | | FEB
02 | .2 | 1.9 | 100 | 11 | 2.9 | <.1 | 11 | 173 | 130 | 67.7 | | MAY
20 | .1 | 1.0 | 63 | 7.0 | 2.0 | <.1 | 5.0 | 112 | 76 | 3360 | | JUL
21 | .1 | •7 | 57 | 6.0 | 2.1 | .1 | 7.0 | 122 | 75 | 257 | | SEP
13 | .2 | 1.1 | 83 | 8.0 | 2.4 | .2 | 8.2 | 144 | 104 | 92.5 | ## 05131500 LITTLE FORK RIVER AT LITTLEFORK, MN--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | ARSENIC DIS- RECOV- DI | | DAT
OCT
01
DEC
14.
FEB
02.
MAY
20
JUL
21
SEP
13. | | GE
NO2+
DI
SOL
(MG
AS
(006 | RO-
NO3
S-
VED
/L | NIT
GMMO
DI
SOL
(MG
AS
(006 | RO-
N,
NIA
S-
VED
/L | NIT
GEN,
MONII
ORGA
TOT
(MG
AS
(006 | RO-
AM-
A +
NIC
AL
/L
N) | PHOPHOR TOT (MG AS (006 | S-
RUS,
AL
H/L
P) | SOL
(MG
AS
(006 | S-
US,
S-
VED
/L
P) | PHOPHOR ORT DISSOLV (MG/AS P(006) | S-
US,
HO,
ED
L | SED
MEN'
SUS-
PEN'
(MG, | I-
T,
DED
/L) | SED
MENN
DI
CHAR
SU
PEN
(T/D
(801 | T,
S-
GE,
S-
DED
AY)
55) | SIE | SP.
VE
AM.
NER
AN
MM | | |--|-------------|--|-----------------|--|-------------------------------|---|-------------------------------------|--|--|-----------------------------------|-------------------------------|--------------------------------------
------------------------------------|-----------------------------------|-------------------------------|-------------------------------------|-----------------------------------|--|--|----------------------------------|-------------------------------------|-----------------------------------| | OLT OLS COPPER TOTAL COPPER, TOTAL IRON, TOTAL LEAD, TOTAL LEAD, TOTAL LEAD, TOTAL COPPER LEAD, SOLVED ERABLE SOLVED LEAD LEAD LEAD LEAD LEAD LEAD LEAD LE | DAT | ΓE | т | IME | TO
(U
AS | TAL
G/L
AS) | SO
(U
AS | IS-
LVED
G/L
AS) | TO
RE
ER
(U
AS | TAL
COV-
ABLE
G/L
BA) | DI
SOL
(U
AS | S-
VED
G/L
BA) | TO
RE
ER
(U
AS | TAL
COV-
ABLE
G/L
CD) | SO
(U
AS | IS-
LVED
G/L
CD) | MI
TO'
RE
ER
(U
AS | UM,
FAL
COV-
ABLE
G/L
CR) | MI
DI
SOI
(UC
AS | UM,
S-
LVED
G/L
CR) | TOT
REC
ER
(UC
AS | TAL
COV-
ABLE
G/L
CO) | | 02 0830 5 2 100 32 <1 <1 <20 10 12 MAY 20 0825 1 1 1 100 42 1 1 1 20 10 2 SEP 13 1400 3 3 3 100 29 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 < | 01. | | 1 | 600 | | 3 | | 3 | | <50 | | 2 | | 1 | | 1 | | 30 | | 10 | | 2 | | 20 0825 1 1 100 42 1 1 20 10 2 SEF 13 1400 3 3 3 100 29 1 | 02. | ••• | 0 | 830 | | 5 | | 2 | | 100 | | 32 | | <1 | | <1 | | 20 | | 10 | | 1 | | 13 1400 3 3 100 29 1 <1 <10 <10 3 3 3 100 29 1 <1 <10 <10 <3 3 3 3 3 3 3 3 3 | 20. | | 0 | 825 | | 1 | | 1 | | 100 | | 42 | | 1 | | 1 | | 20 | | 10 | | 2 | | COPER | | • • • | 1 | 400 | | 3 | | 3 | | 100 | | 29 | | 1 | | <1 | | <10 | | <10 | | 3 | | Ol <1 6 <1 840 230 2 1 60 32 <.1 FEB O2 <1 9 3 1200 690 3 1 40 28 .2 MAY 20 2 13 6 6100 310 6 3 180 21 .6 SEP 13 2 4 2 970 330 4 4 60 23 .6 MERCURY TOTAL DIS- RECOV- DIS- NIUM, DIS- RECOV- DIS- SOLVED (UG/L (| FA D | PE. | DI
SOL
(U | S-
VED
G/L
CO) | TO
RE
ER
(U | TAL
COV-
ABLE
G/L
CU) | DI
SO
(U
AS | S-
LVED
G/L
CU) | TO
RE
ER
(U
AS | TAL
COV-
ABLE
G/L
FE) | SO
(U
AS | IS-
LVED
G/L
FE) | TO
RE
ER
(U
AS | TAL
COV-
ABLE
G/L
PB) | D
SO
(U
AS | IS-
LVED
G/L
PB) | NE
TO
RE
ER
(U | SE,
TAL
COV-
ABLE
G/L
MN) | NE
D
SO
(U
AS | SE,
IS-
LVED
G/L
MN) | TO:
REC
ER
(UC
AS | TAL
COV-
ABLE
G/L
HG) | | NICKEL, NICKEL, NICKEL, NICKEL, NIUM, NICKEL, NIUM, NI | | | | < 1 | | 6 | | <1 | | 840 | | 230 | | 2 | | 1 | | 60 | | 32 | | <.1 | | MAY 20 2 13 6 6100 310 6 3 180 21 .6 SEP 13 2 4 2 970 330 4 4 60 23 .6 MERCURY TOTAL NICKEL, SELE- NIUM, TOTAL SILVER, TOTAL ZINC, DIS- RECOV- DIS- NIUM, DIS- RECOV- | FEB | NICKEL, NICKEL, SELE- SILVER, TOTAL ZINC, NICKEL, SELE- NIUM, TOTAL SILVER, TOTAL ZINC, DIS- RECOV- DIS- NIUM, DIS- RECOV- RECO | MAY | NICKEL, SELE- SILVER, ZINC, MERCURY TOTAL NICKEL, SELE- NIUM, TOTAL SILVER, TOTAL ZINC, DIS- RECOV- DIS- RECOV- DIS- RECOV- DIS- RECOV- DIS- RECOV- DIS- RECOV- DIS- SOLVED ERABLE ERA | SEP | 01 <.1 7 1 <1 <1 2 <1 20 4 FEB 02 <.1 1 1 <1 <1 <1 <1 70 70 MAY 20 .1 14 4 <1 <1 <1 <1 <1 50 11 SEP | -3. | DAT | ſΈ | MERO
DI
SOL
(UG
AS | S-
VED
/L
HG) | NICK
TOT
REC
ERA
(UG | AL
OV-
BLE
/L
NI) | NICK
DIS
SOL
(UG
AS | VED
/L
NI) | SEI
NIU
TOT
(UG
AS | JM,
TAL
B/L
SE) | SEL
NIU
DI
SOL
(UG
AS | M,
S-
VED
/L
SE) | SILV
TOT
REC
ERA
(UG | AL
OV-
BLE
/L
AG) | SILV
DI
SOL
(UG
AS | S-
VED
/L
AG) | ZIN
TOT
REC
ERA
(UG | AĹ
OV-
BLE
/L
ZN) | ZIN
DI
SOL
(UG
AS | S-
VED
/L
ZN) | •• | | 02 <.1 1 1 <1 <1 <1 <1 70 70 MAY 201 14 4 <1 <1 <1 <1 50 11 SEP | | 01. | • • • | | <.1 | | 7 | | 1 | | <1 | | <1 | | 2 | | <1 | | 20 | | 4 | | | 201 14 4 <1 <1 <1 <1 50 11 SEP | | 02. | | | <.1 | | 1 | | 1 | | <1 | | <1 | | <1 | | <1 | | 70 | | 70 | | | | | 20 | | | .1 | | 14 | | 4 | | <1 | | <1 | | <1 | | <1 | | 50 | | 11 | | | | | | • • • | | •3 | | 5 | | 1 | | <1 | | <1 | | <1 | | <1 | | 50 | | <4 | | LAKE OF THE WOODS BASIN 05131500 LITTLE FORK RIVER AT LITTLEFORK, MN--Continued SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | DAY | MAX | MIN | MEAN | |---|--|--|---|---|---|--|--|---|---|--|--|--| | | | OCTOBE | | | NOVEMBE | R | | DECEMBE | R | | JANUAR | Y | | 1
2
3
4
5 | 198
195
171
180
157 | 183
173
157
151
149 | 189
181
162
165
151 | 165
165
161
163
163 | 164
164
159
160
162 | 164
165
160
161
162 | 161
157
157
159
159 | 157
154
155
156
158 | 158
155
156
158
158 | 194
197
199
200
201 | 192
193
196
198
200 | 193
195
198
199
201 | | 6
7
8
9
10 | 184
183
177
167
164 | 152
177
167
163
162 | 164
181
172
164
163 | 163
162
163
157
157 | 161
161
161
155
155 | 162
162
162
156
156 | 160
161
156
159
161 | 158
159
155
156
158 | 159
160
156
157
160 | 203
206
206
203
204 | 201
201
201
202
202 | 202
202
202
203
203 | | 11
12
13
14
15 | 161
165
173
174
173 | 159
161
165
172
171 | 160
163
169
173
172 | 158
160
162
158
160 | 156
158
159
156
157 | 157
159
160
157
159 | 163
164
165
165
166 | 160
162
164
164
164 | 162
163
164
164
165 | 205
206
207
208
210 | 202
204
205
206
207 | 204
205
206
207
208 | | 16
17
18
19
20 | 174
171
173
174
177 | 171
168
171
171
173 | 172
169
172
172
176 | 161
162
162
162
156 | 160
160
161
161
155 | 161
161
161
161
156 | 168
172
174
177
179 | 165
168
171
174
176 | 166
170
173
176
177 | 211
213
215
216
217 | 208
210
212
214
215 | 209
211
214
215
216 | | 21
22
23
24
25 | 174
170
161
160
160 | 169
166
160
158
158 | 171
168
161
159
159 | 158
161
160
162
161 | 154
158
158
160
160 | 156
159
159
160
160 | 180
181
183
186
185 | 178
179
180
182
184 | 179
180
181
184
185 | 216
217
218
219
220 | 216
217 | 216
216
217
218
219 | | 26
27
28
29
30
31 | 159
161
164
160
163
164 | 157
158
161
158
160
163 | 158
159
162
159
161
164 | 156
156
158
159
159 | 155
155
156
156 | 155
155
156
157
158 | 186
188
188
189
190
192 | 184
186
187
187
189
190 | 185
187
187
188
190
191 | 220
222
222
223
222
223 | 219
220
221
221
221
221 | 220
221
221
222
222
222 | | MONTH | 198 | 149 | 167 | 165 | 154 | 159 | 192 | 154 | 171 | 223 | 192 | 210 | | | | | | | | | | | | | | | | | MAY | MIN | MOAN | MAR | WTN | MT5 4 M | M A V | MTN | I ASTRONALI | MAY | N. T. V. | MERAN | | DAY | MAX | MIN
FEBRUAR | MEAN
Y | MAX | MIN
MARCH | MEAN | MAX | MIN
APRIL | MEAN | MAX | MIN
May | MEAN | | | | FEBRUAR
222 | Y | MAX
242
243
243
244
245 | MIN
MARCH
241
241
241
242
243 | | MAX
201
189
188
185
187 | APRIL | | MAX | MIN
MAY | MEAN | | DAY 1 2 3 4 | 223
223
224 | FEBRUAR 222 222 222 223 | 222
223
223
224
225 | 242
243
243
244 | MARCH
241
241
241
242
243 | 24 2
24 2
24 2
24 3 | 201
189
188
185 | APRIL
198
187
185
181 | 200
188
186
183 | MAX | | MEAN | | DAY 1 2 3 4 5 6 7 8 9 9 | 223
223
224
225
226
227
228
228
230 | FEBRUAR 222 222 222 223 224 225 226 227 228 | 222
223
223
224
225 | 242
243
243
244
245 | MARCH
241
241
241
242
243 | 244
244
244
242
242
242
242
242
244
244 | 201
189
188
185
187
185
181
184
178 | APRIL
198
187
185
181
185
181
179
177 | 200
188
186
183
186
183
180
180 | MAX | | MEAN | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
223
223
224
225
226
227
228
230
232
234
235
236
238 | FEBRUAR 222 222 222 223 224 225 226 227 228 229 232 232 234 | 222
223
223
224
225
226
227
228
229
231
233
234
235 | 243
2443
2445
2445
2445
2445
2445
2445
2 | MARCH 241 241 242 243 243 243 2445 245 247 247 | 242
242
243
244
244
244
244
246
678
248 | 201
189
188
185
187
181
184
178
178
174
177
175 | 198
187
185
181
185
181
179
177
173
174
171
174
170
167 | 200
188
186
183
186
180
176
176
177
1775
1773 | MAX | | MEAN | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | 223
223
224
225
226
227
228
238
230
232
235
236
238
239
240
241
241 | FEBRUAR 222 222 223 224 225 226 227 228 229 232 234 236 237 238 238 239 239 | 222
223
223
224
225
226
227
228
229
231
233
234
235
237
238
239
240
240 | 243345
2443245
244557
244557
244224
24501
24501 | MARCH 241 241 242 243 243 243 2445 245 247 247 248 248 249 | 22234
43446
67888
8899 | 201
189
188
185
187
185
181
184
178
177
177
179
167
154
107
86 | 198
187
185
181
185
181
179
177
173
174
171
174
170
167
148
129
102
87
82 | 200
188
186
183
186
180
180
176
175
1775
1774
160
138
120
96 | MAX | | MEAN | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | 223
223
224
225
226
227
228
228
230
232
235
236
238
239
241
241
241
241
241
241
241
242 | FEBRUAR 222 222 223 224 225 226 227 228 229 232 234 236 237 238 239 240 239 239 240 | 222
223
224
225
226
227
228
229
231
233
234
235
237
238
239
240
240
240
240
240
241 | 233345
2445
2445
2445
2445
2445
2445
244 | MARCH 241 241 241 242 243 243 2443 2445 245 2477 248 2449 249 248 2499 248 2499 | 22234 43446 67888 88990 9901
22234 43446 67888 2222
22222 22444 24445 4455
2255 | 201
189
188
185
187
185
181
184
178
177
175
179
167
154
129
107
86
92
100
98
106 | 198
187
185
181
185
181
177
177
173
174
171
174
170
167
148
129
102
87
82
83
90
87
94
88 | 200
1888
186
183
186
183
180
176
177
177
177
177
177
178
120
96
84
87
97
995 | MAX | | MEAN | 117 05131500 LITTLE FORK RIVER AT LITTLEFORK, MN--Continued SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | | D1130 | 01110 00 | | (MIONOPHIOE | OH AL Z | ט אינוע ע. |), WATER YEAR | . OOLODE | | , philippin | -, | | |---|--|---|---
--|--|--|--|--|--|---|---|--| | DAY | MAX | MIN | MEAN | | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMB | ER | | 1 | | | | | | | 163
166 | 161
161 | 162
163 | 180
178 | 174
173 | 176
175 | | 1
2
3
4
5 | | | | | | | 168 | 165 | 167 | 179
178 | 171 | 175 | | 4
5 | | | | | | | 171
173 | 168
170 | 169
171 | 178
175 | 173
173 | 175
174 | | | | | | | | | 174 | 172 | 173 | 174 | 172 | 173 | | 6
7
8 | | | | | | | 175 | 173 | 174 | 174 | 172 | 173 | | 8
9 | | | | | | | 177
180 | 175
176 | 176
178 | 176
178 | 173
175 | 174
176 | | 9
10 | | | | | | | 182 | 178 | 180 | 181 | 177 | 179 | | 11 | | | | | | | 184 | 181 | 182 | 186 | 181 | 183
186 | | 12
13 | | | | | | | 184
185 | 182
183 | 183
184 | 187
187 | 184
177 | 186
182 | | 14
15 | | | | | | | 185
190 | 183
183 | 184
186 | 181
180 | 178
178 | 179
179 | | | | | | | | | | | | | | | | 16
17 | | | | | | | 192
190 | 187
188 | 189
189 | 178
171 | 171
159 | 174
164 | | 18
19 | | | | | | | 189
191 | 186
187 | 188
189 | 164
167 | 159
164 | 162
165 | | 20 | | | | | | | 189 | 183 | 186 | 166 | 154 | 160 | | 21 | | | | 255 | 124 | 170 | 191 | 182 | 187 | 154 | 145 | 149
142 | | 22
23 | | | | 135
136 | 131
134 | 133
135 | 189
188 | 182
182 | 185
185 | 145
143 | 139
139 | 142
141 | | 23
24 | | | | 140 | 135 | 138 | 190 | 184 | 187
188 | 144
141 | 140 | 143 | | 25 | | | | 144 | 139 | 141 | 190 | 185 | | | 139 | 140 | | 26
27 | | | | 149
152 | 144
149 | 146
150 | 185
172 | 173
165 | 178
168 | 139
138 | 138
137 | 138
137 | | 27
28 | | | | 155 | 152 | 153 | 169 | 167 | 168 | 139 | 136 | 137 | | 29
30
31 | | | | 158
161 | 154
157 | 156
159 | 172
176 | 169
172 | 170
174 | 143
143 | 139
141 | 141
142 | | 31 | | | | 163 | 160 | 161 | 178 | 175 | 176 | | | | | MONTH | | | | | | | 192 | 161 | 179 | 187 | 136 | 163 | / | > | | | 001 70 | | 1000 | | | | | | | | - | - | | EAR OCTOBER 1 | | | | | | | DAY | MAX | MIN | TEMPERATUR
MEAN | E, WATER (| DEG. C),
MIN | WATER Y | EAR OCTOBER 1 | .981 TO 8 | SEPTEMBER
MEAN | 1982
MAX | MIN | MEAN | | DAY | MAX | | MEAN | - | - | MEAN | | | MEAN | | MIN
Januaf | | | 1 | 8.0 | MIN
OCTOBE
6.0 | MEAN
ER
7.0 | MAX | MIN
NOVEMBE | MEAN
ER
4.0 | MAX | MIN
DECEMBE | MEAN
R | MAX | JANUAF | .0 | | 1
2 | 8.0
7.5
7.0 | MIN
OCTOBE | MEAN
ER | MAX | MIN
NOVEMBE | MEAN ER 4.0 4.0 4.5 | MAX | MIN
DECEMBE | MEAN
R | MAX | JANUAF | X Y | | 1
2
3
4 | 8.0
7.5
7.0
7.0 | MIN
OCTOBE
6.0
6.0
6.0
6.5 | MEAN 7.0 6.5 6.5 7.0 | MAX 4.5 4.5 4.5 5.0 | MIN
NOVEMBE
4.0
4.0
4.0
4.0 | MEAN ER 4.0 4.0 4.5 4.5 | .0
.0
.0 | MIN DECEMBE | MEAN R .0 .0 .0 .0 | MAX .0 .0 .0 | JANUAF .0 .0 .0 .0 | .0
.0
.0 | | 1
2
3
4
5 | 8.0
7.5
7.0
7.0
7.5 | MIN
OCTOBE
6.0
6.0
6.0
6.5
7.0 | MEAN 7.0 6.5 6.5 7.0 7.5 | MAX
4.5
4.5
4.5
5.0 | MIN
NOVEMBE
4.0
4.0
4.0
4.0
4.0 | MEAN 4.0 4.0 4.5 4.5 | .0
.0
.0
.0 | MIN DECEMBE .0 .0 .0 .0 .0 | MEAN R .0 .0 .0 .0 .0 | .0
.0
.0 | JANUAF
.0
.0
.0
.0 | .0
.0
.0
.0 | | 1
2
3
4
5 | 8.0
7.5
7.0
7.0
7.5
8.5
8.0 | MIN
OCTOBE
6.0
6.0
6.5
7.0 | MEAN 7.0 6.5 6.5 7.0 7.5 8.0 8.0 | MAX 4.5 4.5 5.0 5.0 4.5 | MIN
NOVEMBE
4.0
4.0
4.0
4.0
4.0 | MEAN ER 4.0 4.0 4.5 4.5 4.5 4.5 | .0
.0
.0
.0
.0 | MIN DECEMBE | MEAN R .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MAX .0 .0 .0 .0 .0 .0 | JANUAF
.0
.0
.0
.0
.0 | .0
.0
.0
.0
.0 | | 1
2
3
4
5
6
7
8 | 8.0
7.5
7.0
7.0
7.5
8.5
8.0 | MIN
OCTOBE
6.0
6.0
6.5
7.0
7.5
7.5 | MEAN 7.0 6.5 6.5 7.0 7.5 8.0 8.0 7.5 | MAX 4.5 4.5 5.0 5.0 4.5 4.7 4.5 | MIN
NOVEMBE
4.0
4.0
4.0
4.0
4.0
4.0
4.0 | MEAN 4.0 4.5 4.5 4.5 4.5 3.0 | MAX .0 .0 .0 .0 .0 .0 .0 | MIN DECEMBE .0 .0 .0 .0 .0 .0 .0 .0 | MEAN R .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MAX .0 .0 .0 .0 .0 .0 .0 | JANUAF .0 .0 .0 .0 .0 .0 .0 | .0
.0
.0
.0
.0 | | 1
2
3
4
5 | 8.0
7.5
7.0
7.0
7.5
8.5
8.0 | MIN
OCTOBE
6.0
6.0
6.5
7.0 | MEAN 7.0 6.5 6.5 7.0 7.5 8.0 8.0 | MAX 4.5 4.5 5.0 5.0 4.5 | MIN
NOVEMBE
4.0
4.0
4.0
4.0
4.0 | MEAN ER 4.0 4.0 4.5 4.5 4.5 4.5 | .0
.0
.0
.0
.0 | MIN DECEMBE .0 .0 .0 .0 .0 .0 | MEAN R .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MAX .0 .0 .0 .0 .0 .0 | JANUAF
.0
.0
.0
.0
.0 | .0
.0
.0
.0
.0 | | 1
2
3
4
5
6
7
8
9
10 | 8.0
7.5
7.0
7.0
7.5
8.5
8.0
7.5
7.5
8.0 | MIN OCTOBE 6.0 6.0 6.5 7.0 7.5 7.5 7.5 7.5 | MEAN 7.0 6.5 6.5 7.0 7.5 8.0 8.0 7.5 7.5 8.0 | MAX 4.5 4.5 5.0 5.0 4.5 4.5 5.0 1.5 | MIN
NOVEMBE
4.0
4.0
4.0
4.0
4.0
4.0
4.0
5.5
1.5
1.0 | MEAN ER 4.0 4.0 4.5 4.5 4.5 4.5 4.1 1.5 | .0
.0
.0
.0
.0
.0 | MIN DECEMBE .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MEAN R .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 . | MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | JANUAF .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0
.0
.0
.0
.0
.0 | | 1
2
3
4
5
6
7
8
9
10 | 8.0
7.5
7.0
7.5
8.5
8.0
7.5
8.0
8.5
8.5 | MIN
OCTOBE
6.0
6.0
6.5
7.0
7.5
7.5
7.5
7.5
7.5 | MEAN 7.0 6.5 6.5 7.0 7.5 8.0 8.0 7.5 7.5 7.5 8.0 8.0 | MAX 4.5 4.5 5.0 5.0 4.5 4.5 5.0 5.0 1.5 | MIN
NOVEMBE
4.0
4.0
4.0
4.0
4.0
4.0
4.0
1.0 | MEAN ER 4.0 4.0 4.5 4.5 4.5 4.5 4.5 1.5 1.5 | .0
.0
.0
.0
.0
.0 | MIN DECEMBE .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MEAN R .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 . | MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | JANUAF .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0
.0
.0
.0
.0
.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 8.0
7.5
7.0
7.5
8.5
8.0
7.5
8.0
8.5
8.5 | MIN OCTOBE 6.0 6.0 6.0 7.5 7.5 7.5 7.5 8.5 | MEAN 7.0 6.5 6.5 7.0 7.5 8.0 8.0 7.5 7.5 8.0 8.5 9.0 | MAX 4.55 4.55 5.00 4.05 2.05 1.55 3.00 | MIN
NOVEMBE
4.0
4.0
4.0
4.0
4.0
4.0
4.0
1.0
1.5 | MEAN 4.0 4.0 4.5 4.5 4.5 4.5 1.5 2.0 1.5 1.5 2.0 3.0 | MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MIN DECEMBE .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MEAN R .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | JANUAF .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0
.0
.0
.0
.0
.0
.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 8.0
7.5
7.0
7.5
8.5
8.5
7.5
8.0
8.5
9.5
9.5 | MIN
OCTOBE
6.0
6.0
6.5
7.0
7.5
7.5
7.5
7.5
7.5
8.5
9.0
8.5 | MEAN 7.0 6.5 6.5 7.0 7.5 8.0 8.0 7.5 7.5 7.5 8.0 8.5 9.0 9.0 | MAX 4.55 4.55 5.00 4.05 4.05 2.05 1.55 3.55 | MIN NOVEMBE 4.0 4.0 4.0 4.0 4.0 4.0 1.0 1.0 1.5 2.5 3.0 | MEAN 4.0 4.0 4.5 4.5 4.5 4.0 3.5 3.0 2.0 1.5 1.5 2.0 3.0 3.0 | .0
.0
.0
.0
.0
.0
.0 | MIN DECEMBE .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
| MEAN R .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 . | MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | JANUAF .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0
.0
.0
.0
.0
.0
.0
.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 8.0
7.5
7.0
7.5
8.0
7.5
8.0
7.5
8.0
9.0
9.0
9.0 | MIN
OCTOBE
6.0
6.0
6.0
6.0
7.5
7.5
7.5
7.5
7.5
8.5
9.5
8.5
9.5 | MEAN 7.0 6.5 6.5 7.0 7.5 8.0 8.0 7.5 7.5 7.5 8.0 8.0 9.0 | MAX 4.55 4.55 5.00 4.05 4.05 2.05 1.55 3.55 | MIN NOVEMBE 4.0 4.0 4.0 4.0 4.0 4.0 1.0 1.0 1.5 2.5 3.0 | MEAN 4.0 4.0 4.5 4.5 4.5 4.0 3.5 3.0 2.0 1.5 1.5 2.0 3.0 3.0 | MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MIN DECEMBE .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MEAN R .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | JANUAF .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0
.0
.0
.0
.0
.0
.0
.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 8.05
7.50
7.50
7.55
8.05
7.55
8.05
7.55
8.05
9.00
9.00 | MIN
OCTOBE
6.0
6.0
6.0
6.5
7.0
7.5
7.5
7.5
7.5
7.5
7.5
8.5
9.5
8.5
9.5
9.5 | MEAN 7.0 6.5 6.5 7.0 7.5 8.0 8.0 7.5 7.5 7.5 8.0 9.0 9.0 9.0 9.0 | MAX 4.55 4.55 5.00 4.05 4.05 2.05 1.55 3.55 | MIN NOVEMBE 4.0 4.0 4.0 4.0 4.0 4.0 1.0 1.0 1.5 2.5 3.0 | MEAN ER 4.0 4.5 4.5 4.5 4.5 4.5 2.0 3.5 2.0 3.5 3.5 3.0 | MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MIN DECEMBE .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MEAN R .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 . | MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | JANUAF .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0
.0
.0
.0
.0
.0
.0
.0
.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 8.0
7.5
7.0
7.5
8.0
7.5
8.0
7.5
8.0
9.0
9.0
9.0 | MIN
OCTOBE
6.0
6.0
6.0
6.0
7.5
7.5
7.5
7.5
7.5
8.5
9.5
8.5
9.5 | MEAN 7.0 6.5 6.5 7.0 7.5 8.0 8.0 7.5 7.5 8.0 8.5 9.0 9.0 | MAX 4.55 4.55 5.00 4.05 4.05 2.05 1.55 3.55 | MIN NOVEMBE 4.0 4.0 4.0 4.0 4.0 4.0 1.0 1.0 1.5 2.5 3.0 | MEAN ER 4.0 4.5 4.5 4.5 4.5 2.0 1.5 2.0 3.0 3.5 3.5 | MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MIN DECEMBE .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MEAN R .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | JANUAF .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0
.0
.0
.0
.0
.0
.0
.0
.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | 8.0
7.5
7.0
7.5
8.5
8.0
7.5
8.0
9.5
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0 | MIN
OCTOBE
6.0
6.0
6.0
7.5
7.5
7.5
7.5
8.5
9.5
7.5
8.5
9.5
7.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9 | MEAN 7.0 6.5 6.5 7.0 7.5 8.0 8.0 7.5 7.5 7.5 8.0 9.0 9.0 9.0 9.0 7.0 7.0 | MAX 4.5555.0 4.555.0 4.555.0 4.555.0 4.555.0 4.555.0 4.555.0 4.555.0 4.555.0 4.555.0 4.555.0 4.555.0 4.555.0 4.555.0 4.555.0 5.555.5 5 | MIN NOVEMBE 4.0 4.0 4.0 4.0 4.0 4.0 1.0 1.5 2.5 1.5 1.0 3.5 2.5 1.5 3.0 | MEAN ER 4.0 4.5 4.5 4.5 4.5 2.0 1.5 2.0 3.0 2.0 3.5 2.0 3.0 3.0 3.1 3.0 3.0 3.0 | MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MIN DECEMBE .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MEAN R .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | JANUAF .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0
.0
.0
.0
.0
.0
.0
.0
.0
.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 8.0
7.5
7.0
7.5
8.5
7.5
8.5
7.5
8.5
9.5
9.5
9.5
7.6
6.0 | MIN
OCTOBE
6.00
6.00
6.00
7.55
7.55
7.55
7.55
8.50
8.50
8.50
7.55
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50 | MEAN 7.0 6.5 6.5 7.0 7.5 8.0 8.0 7.5 7.5 7.5 8.0 9.0 9.0 9.0 9.0 7.0 7.0 | MAX 555500 50505 555555 55 55 55 55 55 55 5 | MIN NOVEMBER 4.0 4.0 4.0 4.0 4.0 4.0 1.0 1.5 1.5 1.0 1.0 1.5 2.5 3.0 3.5 2.5 1.5 0.0 | MEAN ER 4.0 4.5 4.5 4.5 4.5 1.5 1.5 1.5 1.5 1.5 1.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 | MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MIN DECEMBE .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MEAN R .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | JANUAF .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0
.0
.0
.0
.0
.0
.0
.0
.0
.0 | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 3 24 | 8.05.0005
7.005
8.05.50
8.05.50
8.05.50
9.005
9.005
0.005
0.005 | MIN OCTOBE 6.00 6.05 7.05 5.05 5.05 5.05 5.05 5.05 5.05 5 | MEAN 7.0 6.5 7.0 7.5 8.0 8.5 7.5 8.0 9.0 9.0 9.0 9.0 5.5 5.5 3.0 | MAX 4.555500 50505 555055 55505 4.321.123333 333321 | MIN NOVEMBE 4.0 4.0 4.0 4.0 4.0 4.0 1.0 1.0 1.5 2.5 1.5 1.0 1.0 1.5 2.5 1.5 0 0 0 0 0 | MEAN ER 4.0 4.5 4.5 4.5 4.5 2.0 1.5 2.0 3.0 3.5 2.0 1.5 0 0.0 0.0 | MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MIN DECEMBE .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MEAN R .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | JANUAF .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0 | | 1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 17 18 19 20 21 22 23 4 25 |
8.05.005
7.005
8.05.50
8.05.50
8.05.50
9.005
9.005
9.005
0.000 | MIN OCTOBE 6.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5 | MEAN 7.0 6.5 6.5 7.0 7.5 8.0 8.0 7.5 7.5 7.5 8.0 9.0 9.0 9.0 9.0 7.0 7.0 | MAX 555500 50505 55055 55555 550 44321 123333 33321 | MIN NOVEMBE 4.0 4.0 4.0 4.0 4.0 4.0 1.0 1.5 1.5 1.0 1.0 1.5 2.5 1.5 1.0 0 0 0 0 0 | MEAN ER 4.0 4.5 4.5 4.5 4.5 2.0 1.5 1.5 2.0 3.0 2.0 1.0 0.0 | MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MIN DECEMBE .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MEAN R .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | JANUAF .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0
.0
.0
.0
.0
.0
.0
.0
.0
.0 | | 1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 17 18 19 20 21 22 32 42 5 26 | 8.05
7.50
7.00
7.50
7.50
8.05
5.00
8.05
5.00
9.00
9.00
9.00
9.00
9.00
9.00
9 | MIN OCTOBE 6.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5 | MEAN 7.0 6.5 7.0 6.5 7.0 7.5 8.0 8.0 7.5 7.5 8.0 9.0 9.0 9.0 9.0 9.0 1.5 | MAX 4.5555.00 50505 555055 555000 0 4.321 123333 33332100 0 | MIN NOVEMBER 4.0 4.0 4.0 4.0 4.0 4.0 1.0 1.0 1.5 2.5 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 | MEAN ER 4.0 4.5 4.5 4.5 4.5 2.0 1.5 2.0 3.0 2.0 1.5 2.0 3.0 2.0 2.0 2.0 2.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3 | MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MIN DECEMBE .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MEAN R .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | JANUAF .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0 | | 1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 17 18 19 20 21 22 32 42 5 26 | 8.0
7.5
7.0
7.5
8.5
7.5
8.5
7.5
8.5
7.5
8.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9 | MIN OCTOBE 6.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5 | MEAN 6.5 7.0 6.5 7.0 8.0 7.5 8.0 7.5 8.0 9.0 9.0 9.0 9.0 8.0 7.0 5.5 1.0 1.0 | MAX 555500 50505 555055 555000 000 100 100 | MIN NOVEMBER 4.0 4.0 4.0 4.0 4.0 4.0 4.0 5.5 5.5 1.0 1.0 1.5 5.5 1.0 0 0.0 0.0 0.0 | MEAN ER 4.0 4.5 4.5 4.5 4.5 1.5 1.5 1.5 1.5 1.0 3.0 3.0 3.5 3.0 2.0 1.0 0.0 0.0 | MAX .00 .00 .00 .00 .00 .00 .00 .00 .00 .0 | MIN DECEMBE .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MEAN R .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | JANUAF .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0 | | 1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 17 18 19 20 21 22 32 42 5 26 | 8.550005
8.550005
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.655000
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500
8.65500 | MIN OCTOBE 6.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5 | MEAN 7.0 6.5 6.5 7.0 7.5 8.0 8.0 7.55 7.5 8.0 8.0 7.55 7.5 8.0 8.0 7.5 7.5 8.0 8.0 7.5 7.5 8.0 8.0 7.5 7.5 8.0 8.0 7.5 7.5 8.0 8.0 7.5 7.5 8.0 8.0 7.5 8.0 8.0 7.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9 | MAX
4.555.00
5.0505
5.5055
5.55555
5.5555
5.5000
0.00 | MIN NOVEMBE 4.0 4.0 4.0 4.0 4.0 4.0 1.0 1.5 1.5 1.0 1.0 1.0 1.5 2.5 1.5 1.0 0 0 0 0 0 0 0 0 0 0 0 | MEAN ER 4.0 4.5 4.5 4.5 4.5 1.5 2.0 3.0 3.5 3.5 3.0 0 1.0 0 0 0 0 0 0 0 0 | MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MIN DECEMBE .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MEAN R .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | JANUAF .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0 | | 1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 17 18 19 20 21 22 23 4 25 | 8.05
7.50
7.00
7.50
7.50
8.05
5.00
8.05
5.00
9.00
9.00
9.00
9.00
9.00
9.00
9 | MIN OCTOBE 6.00 6.05 7.05 5.05 5.05 5.05 5.05 5.05 5.05 5 | MEAN 7.0 6.5 7.0 6.5 7.5 8.0 8.0 7.5 7.5 8.0 9.0 9.0 9.0 9.0 9.0 9.0 1.0 1.0 1.0 2.0 | MAX 555500 50505 550055 555555 55000 00000 00000 | MIN NOVEMBER 4.0 4.0 4.0 4.0 4.0 4.0 4.0 5.5 5.5 1.0 1.0 1.5 5.5 1.0 0 0.0 0.0 0.0 | MEAN ER 4.0 4.5 4.5 4.5 4.5 2.0 1.5 2.0 3.5 2.0 2.0 2.0 2.0 0.0 0.0 0.0 0.0 | MAX .00 .00 .00 .00 .00 .00 .00 .00 .00 .0 | MIN DECEMBE .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MEAN R .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 . | MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | JANUAF .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0 | .0 MONTH 9.5 •5 6.0 5.0 •0 2.0 .0 .0 .0 .0 # LAKE OF THE WOODS BASIN 05131500 LITTLE FORK RIVER AT LITTLEFORK, MN--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | DAY | MAX | MIN | MEAN | |---|--|--|--|--|---|--|--|--|--|--|--|--| | | | FEBRUAR | Y | | MARCH | | | APRII | _ | | MAY | | | 1
2
3
4
5 | .0
.0
.0 00000 | 10.5
10.5
12.0
12.5
12.5 | 9.5
10.0
10.5
11.5
12.0 | 10.0
10.5
11.0
12.0
12.0 | | 6
7
8
9
10 | .0
.0
.0 | .0
.0
.0 | .0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | 12.0
11.5
11.0
11.0 | 11.5
10.5
10.0
10.5
10.5 | 11.5
11.0
10.5
10.5
11.5 | | 11
12
13
14
15 | .0
.0
.0 12.0
11.5
11.5
11.5
11.5 | 11.5
11.0
11.0
11.5
11.5 | 11.5
11.5
11.5
11.5
12.0 | | 16
17
18
19
20 | .0
.0
.0 .0 | 14.0
14.5
15.0
14.5
14.0 | 13.0
14.0
14.5
13.5
13.5 | 13.5
14.5
15.0
14.5
13.5 | | 21
22
23
24
25 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.5
2.0
4.5
6.0 | .0
.5
2.0
4.5 | .0
.5
1.0
3.0
5.5 | 14.0
14.5
15.0
16.0
17.0 | 13.5
13.5
14.0
15.0
16.0 | 13.5
14.0
14.5
15.5
16.5 | | 26
27
28
29
30
31 |
.0
.0
.0 | .0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | 7.0
7.5
8.5
9.0
10.0 | 6.0
7.0
7.5
8.0
9.0 | 6.5
7.5
8.0
8.5
9.5 | 18.0
19.0
20.0
20.0
19.5
19.0 | 16.5
17.5
18.0
19.0
18.5
18.0 | 17.5
18.5
19.0
19.5
19.0
18.5 | | MONTH | .0 | .0 | •0 | •0 | •0 | .0 | 10.0 | •0 | 1.5 | 20.0 | 9.5 | 13.5 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | MEAN | MAX | MIN
AUGUST | MEAN | MAX | MIN
SE PTEME | MEAN
BER | | DAY 1 2 3 4 5 | MAX 18.0 17.0 17.0 17.5 18.0 | | MEAN
17.0
16.5
16.5
16.5 | MAX
21.5
22.0
22.0
23.0
24.0 | | MEAN 20.5 21.0 21.5 22.0 23.0 | MAX
23.5
23.0
23.0
24.0
25.5 | | | MAX
18.0
18.0
18.5
20.0
19.5 | | | | 1
2
3
4 | 18.0
17.0
17.0
17.5 | JUNE
16.5
15.5
15.5
16.0 | 17.0
16.5
16.5
16.5 | 21.5
22.0
22.0
23.0 | JULY
19.0
20.0
21.5
21.0 | 20.5
21.0
21.5
22.0 | 23.5
23.0
23.0
24.0 | AUGUST
21.5
20.5
21.5
21.5 | 22.5
21.5
22.0
22.5 | 18.0
18.0
18.5
20.0 | SEPTEME
16.0
16.5
15.5
16.0 | 17.0
17.0
17.0 | | 1
2
3
4
5
6
7
8
9 | 18.0
17.0
17.0
17.5
18.0
17.5
17.5
17.5 | JUNE 16.5 15.5 16.0 17.0 17.5 16.5 16.5 | 17.0
16.5
16.5
16.5
17.5
17.5
17.0
17.0 | 21.5
22.0
22.0
23.0
24.0
25.5
24.5
23.5 | JULY 19.0 20.0 21.5 21.0 22.0 23.5 23.0 21.5 21.5 | 20.5
21.0
21.5
22.0
23.0
24.5
23.5
23.5
22.0 | 23.5
23.0
23.0
24.0
25.5
25.0
25.5
23.5
21.0 | AUGUST
21.5
20.5
21.5
21.5
22.0
23.0
23.0
21.0
19.5 | 22.5
21.5
22.0
22.5
23.5
24.0
24.0
22.5
20.5 | 18.0
18.0
18.5
20.0
19.5
18.5
17.5
19.0
20.5 | SEPTEME
16.0
16.5
15.5
16.0
17.5
16.5
16.5
17.0
18.0 | 17.0
17.0
17.0
17.5
18.0
17.5
17.0
18.0
19.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 18.0
17.0
17.0
17.5
18.0
18.0
17.5
17.0
16.5 | JUNE 16.5 15.5 16.0 17.0 17.5 16.5 16.0 15.0 15.5 16.0 17.0 | 17.0
16.5
16.5
17.5
17.0
17.0
16.5
16.0 | 21.5
22.0
22.0
23.0
24.0
25.5
24.5
23.5
23.5
21.5 | JULY 19.0 20.0 21.5 21.0 22.0 23.5 23.0 21.5 21.5 21.0 20.5 20.5 21.0 21.0 | 20.5
21.0
21.5
22.0
23.0
24.5
23.0
22.0
21.0
21.5
21.5
21.5
22.0 | 23.5
23.0
23.0
24.0
25.5
25.5
21.0
21.0
21.0
21.0
22.5 | 21.5
20.5
21.5
21.5
22.0
23.0
23.0
21.0
19.5
18.5
20.0
20.0 | 22.5
21.5
22.0
22.5
23.5
24.0
22.5
20.5
19.5
20.0
20.5 | 18.0
18.5
20.0
19.5
17.5
17.5
19.0
20.5
22.0
21.0
19.5
18.0 | SEPTEME 16.0 16.5 15.5 16.0 17.5 16.5 17.0 18.0 19.5 20.0 18.0 16.5 15.0 | 17.0
17.0
17.0
17.5
18.0
17.5
18.0
19.0
20.5
20.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 18.0
17.0
17.5
18.0
18.0
17.5
17.5
17.5
17.5
17.0
16.5
17.5
19.0
19.0 | JUNE 16.5 15.5 16.0 17.0 17.5 16.5 16.0 17.0 17.5 17.0 17.5 17.0 17.6 | 17.0
16.5
16.5
17.5
17.0
17.0
16.5
16.5
17.0
18.0
18.0
18.0
17.5
17.5 | 21.5
22.0
22.0
23.0
24.0
25.5
23.5
23.5
21.5
22.5
22.5
23.0
23.0
23.0
23.0 | JULY 19.0 20.0 21.5 21.0 22.0 23.5 21.5 21.0 20.5 21.0 20.5 21.0 21.5 22.0 21.5 | 20.5
21.0
21.5
22.0
23.0
24.5
23.0
21.0
21.5
22.0
21.5
22.0
22.0
22.0
22.0 | 23.5
23.0
24.0
25.5
25.5
25.5
21.0
21.0
21.5
21.5
24.0
25.5
24.0 | 21.5
20.5
21.5
21.5
22.0
23.0
21.0
23.0
21.0
19.5
18.5
20.0
20.0
21.0 | 22.5
21.5
22.5
22.5
23.5
24.0
22.5
20.5
19.5
20.5
21.0
22.5
23.5
23.5
23.5
22.5
23.5 | 18.0
18.0
18.5
20.0
19.5
18.5
17.5
19.0
20.5
22.0
21.5
18.0
16.5
15.0 | SEPTEME 16.0 16.5 15.5 16.0 17.5 16.5 17.0 18.0 19.5 20.0 18.0 14.0 13.0 13.0 12.5 13.0 | 17.0
17.0
17.0
17.5
18.0
17.5
18.0
19.0
20.5
20.5
19.0
14.5
13.5
13.5
13.5 | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 3 24 | 18.0
17.0
17.5
18.0
17.5
17.5
17.5
17.0
16.5
17.0
17.5
19.0
18.0
18.0
18.5
17.5
17.5 | JUNE 16.5 15.5 15.5 16.0 17.0 17.5 16.5 16.0 17.5 16.0 17.5 16.0 17.5 17.0 16.5 17.0 16.5 16.0 16.5 17.5 | 17.0
16.5
16.5
16.5
17.5
17.0
17.0
16.0
16.5
17.0
18.0
18.0
17.5
17.0
17.0
17.5
17.0 | 21.5
22.0
22.0
23.0
24.0
25.5
23.5
21.5
22.5
23.0
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5 | JULY 19.0 20.0 21.5 21.0 22.0 23.5 21.5 21.0 20.5 21.5 21.0 20.5 21.0 21.5 21.0 21.5 21.0 22.0 21.5 21.0 22.0 21.5 21.0 22.0 23.0 23.0 23.0 | 20.5
21.0
21.5
22.0
23.0
24.5
23.0
22.0
21.5
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22 | 23.5
23.0
23.0
24.0
25.5
25.5
21.0
21.5
21.0
22.5
24.0
25.5
24.0
25.5
24.0
25.5
24.0
25.5 | AUGUST
21.5
20.5
21.5
21.5
22.0
23.0
21.0
21.0
18.5
18.5
20.0
21.0
21.5
22.5
21.5
20.0
21.0 | 22.5
21.5
22.5
22.5
23.5
24.0
22.5
20.5
21.0
20.5
21.0
22.5
21.0
22.5
22.5
21.0
22.5
21.0
22.5
21.0
22.5
21.0
22.5
21.0
22.5
22.5
22.5
22.5
22.5
22.5
22.5
22 | 18.0
18.5
20.0
19.5
18.5
17.5
19.0
22.0
21.0
19.5
18.0
16.5
14.0
13.0
13.0
13.0
13.0 | SEPTEME 16.0 16.5 15.5 16.0 17.5 16.5 17.0 18.0 19.5 20.0 18.0 14.0 13.0 12.5 13.0 12.5 11.5 11.5 | 17.0
17.0
17.5
18.0
17.5
18.0
19.0
20.5
20.5
19.0
14.5
13.5
13.5
12.5
12.5 | #### 05133500 RAINY RIVER AT MANITOU RAPIDS, MN #### (International gaging station) LOCATION.--Lat 48°38'04", long 93°54'47", in NW&SE& sec.36, T.160 N., R.26 W., Koochiching County, Hydrologic Unit 09030004, on left bank at Manitou Rapids, 4 mi (6 km) west of Indus. DRAINAGE AREA.--19,400 mi² (50,200 km²), approximately. PERIOD OF RECORD.--July 1928 to current year. Monthly discharge only for some periods, published in WSP 1308. October 1911 to October 1924 (gage heights only) at site near Birchdale in files of Corps of Engineers. Published as "near Birchdale" 1932-34. GAGE.--Water-stage recorder. Datum of gage is 1,062.48 ft (323.844 m) National Geodetic Vertical Datum of 1929. Prior to Nov. 10, 1934, nonrecording gage at site near Birchdale 7 mi (11 km) downstream at different datum. REMARKS.--Records good. Diurnal fluctuation caused by powerplant at International Falls. Some regulation at low and medium flows by Rainy and Namakan Lakes. COOPERATION. -- This station is one of the international gaging stations maintained by the United States under agreement with Canada. AVERAGE DISCHARGE.--54 years, 12,790 ft 3 /s (362.2 m 3 /s), 8.95 in/yr (227 mm/yr). EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 71,600 ft 3 /s (2,030 m 3 /s) May 12, 1950, gage height, 21.04 ft (6.413 m); minimum daily, 928 ft 3 /s (26.3 m 3 /s) Dec. 26, 1929. EXTREMES FOR CURRENT YEAR.--Maximum discharge, $38,400 \text{ ft}^3/\text{s}$ (1,090 m $^3/\text{s}$) Apr. 22, gage height, 14.03 ft (4.276 m); minimum, 5,400 ft $^3/\text{s}$ (153 m $^3/\text{s}$) Oct. 1, gage height, 2.86 ft (0.872 m). | | | | DISCHAF | RGE, IN | CUB | IC FEET | PER SE | COND,
MEAI | WATER
VALU | YEAR OC | TOBER 1 | 1981 | TO SEPTEM | BER 1982 | | | |--|--|------------------|--------------------------------------|--|------------------|--|--|----------------------|--|---|--|----------------|--|--|--|--| | DAY | OC' | T | NOA | DEC | ; | JAN | FEI | 3 | MAR | APR | М | ΑY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 556
619
708
771
826 | 0
0
0 | 8270
8910
9400
9560
8810 | 8730
9470
9570
9670
9670 |)
)
) | 9000
7500
8000
9000
9000 | 8500
8500
9000
8500
8000 |) 10 | 9500
0000
9500
0000
9500 | 8660
7750
7470
7280
7210 | 223
212
209
196
190 | 00
00
00 | 28000
28700
28400
27800
26000 | 11400
8930
9790
10300
10400 | 23200
23400
23300
23200
23100 | 10800
10200
9850
9680
9630 | | 6
7
8
9
10 | 928
1060
1130
1120
1090 | 0
0
0 | 8350
8810
8680
8580
8340 | 9730
9440
9400
9360
9300 |)
} | 9500
9500
8500
8500
8500 | 9000
9000
9000
8500
8500 |) | 0000
9500
9500
9500
9500 | 7170
7130
7090
7070
6980 | 213
233
229
220
206 | 00
00 | 25000
24700
24600
24600
25600 | 10900
12000
12600
13000
15500 | 23000
21600
20800
20200
17200 | 9430
7800
8460
8730
8410 | | 11
12
13
14
15 | 1060
1020
985
960
943 |
0
0
0 | 8480
8220
8180
8340
8380 | 9200
9200
9200
9200
9200 |)
)
) | 9000
9000
9000
9000
8500 | 8500
8500
8500
9000
9000 |) 10
) 10
) 10 | 0000
0000
0000
0000
9500 | 7080
6800
6820
7710
9740 | 202
209
213
215
228 | 00
00 | 28000
28900
28800
28400
27900 | 16500
17100
19200
20200
21500 | 15800
15200
12500
11100
10700 | 8420
8540
8620
8550
8560 | | 16
17
18
19
20 | 920
896
889
938
1020 | 0
0
0 | 8470
8950
9110
8950
8810 | 9200
9200
9200
9200
9200 |)
)
) | 9000
8500
9000
9000
9000 | 8500
9000
9000
9000
8500 |) 1 | 9000
9500
9500
0500
0000 | 13500
17700
21500
24700
27900 | 254
278
287
296
320 | 00
00
00 | 27500
27100
26800
26600
26300 | 22200
23900
24300
24300
23500 | 10600
10600
10700
10700
10700 | 8700
8940
8900
8620
8390 | | 21
22
23
24
25 | 1050
1030
992
979
956 | 0
0
0 | 8520
8250
8110
8140
8220 | 9200
9000
8500
8000
7500 |)
)
) | 9000
8500
8500
8000
8000 | 8500
9000
8500
9000
8500 |) 10 | 0000
0000
0000
9500
9380 | 33300
37700
35200
32800
31100 | 338
343
313
283
267 | 00
00
00 | 25800
23200
19200
17200
16 7 00 | 19100
17000
16500
16300
16200 | 11000
11200
11300
11200
11300 | 8050
8110
7700
7620
7460 | | 26
27
28
29
30
31 | 921
875
854
835
826
801 | 0
0
0
0 | 8420
8360
8530
8500
8430 | 6000
7500
8000
8500
9000
9200 |)
)
) | 8000
8500
8500
8000
8000
8500 | 8500
9500
9500
 |) ; | 8890
8670
8360
3300
7930
3320 | 30500
29200
27300
25400
23600 | 281
278
270
264
258
259 | 00
00
00 | 14200
12800
12500
12100
11900 | 16100
16100
17400
19900
21000
22600 | 11400
11300
11300
11300
11200
11200 | 7230
7210
7480
7580
7790 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 28558
921
1130
556
•4 | 2
0
0
8 | 57080
8569
9560
8110
.44 | 276740
8927
9730
6000
•46 | ,
)
)
; | 267500
8629
9500
7500
•45
•51 | 245000
8750
9500
8000
• 45 |) 1 | 4350
9495
0500
7930
•49
•56 | 523360
17450
37700
6800
.90
1.00 | | 20 | 705300
23510
28900
11900
1.21
1.35 | 525720
16960
24300
8930
.87
1.01 | 461300
14880
23400
10600
•77
•88 | 255460
8515
10800
7210
.44 | | CAL YR
WTR YR | | TOTAL
TOTAL | | | IEAN
IEAN | 10710
13360 | MAX
MAX | 29800
37700 | MIN
MIN | | CFSM
CFSM | | IN 7.50
IN 9.35 | | | | # 05133500 RAINY RIVER AT MANITOU RAPIDS, MN--Continued (National stream-quality accounting network station) #### WATER-QUALITY RECORDS PERIOD OF RECORD. -- Water years 1968-70, October 1977 to current year. PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: October 1980 to September 1982. WATER TEMPERATURES: October 1980 to September 1982. INSTRUMENTATION. -- Water-quality minimonitor since October 1980. REMARKS.--Letter K indicates non-ideal colony count. EXTREMES FOR PERIOD OF DAILY RECORD. -- SPECIFIC CONDUCTANCE: Maximum, 166 micromhos July 2, 1982; minimum, 72 micromhos July 31, Aug. 2, 1982. WATER TEMPERATURES: Maximum, 25.0°C July 18, Aug. 14, 1981; minimum, 0.0°C several days during winter period. EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum, 166 micromhos July 2; minimum, 72 micromhos July 31, Aug. 2. WATER TEMPERATURES: Maximum, 23.5°C July 6, Aug. 17; minimum, 0.0°C several days during winter period. WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | DATE | TIME | DIS-
CHARGE,
IN
CUBIC
FEET
PER
SECOND
(00060) | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS)
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS)
(00095) | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(UMHOS)
(90095) | PH
(STAND-
ARD
UNITS)
(00400) | PH
LAB
(STAND-
ARD
UNITS)
(00403) | TEMPER-
ATURE,
AIR
(DEG C)
(00020) | TEMPER-
ATURE
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | |----------------|---|--|---|---|--|---|--|---|--|---| | OCT
01 | 1145 | | 5540 | 123 | 120 | 8.1 | 7.3 | 2.0 | 7.5 | 731 | | DEC
15 | 1045 | 9 200 | | 123 | 75 | 7.6 | 7.4 | -20.0 | .0 | 735 | | FEB
02 | 1130 | 8500 | | 100 | 79 | 7.4 | 7.5 | 25.0 | .0 | 7 39 | | MAY
20 | 1230 | | 32100 | 114 | 104 | 7.6 | 7.4 | 16.0 | 13.5 | 734 | | \mathtt{JUL} | | | | | | | · | | | | | 20
SEP | 1530 | | 23600 | 79 | 65 | 7.4 | 7.1 | 30.0 | 19.5 | 728 | | 14 | 1130 | | 8530 | 105 | 85 | 7.3 | 7.5 | 8.0 | 15.0 | 738 | | DATE | TUR-
BID-
ITY
(NTU)
(00076) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | STRE P-
TOCOCCI
FECAL,
KF AGAR
(COLS.
PER
100 ML)
(31673) | HARD-
NESS
(MG/L
AS
CACO3)
(00900) | HARD-
NESS
NONCAR-
BONATE
(MG/L
AS
CACO3)
(95902) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | | OCT | - 0 | (| | | | 4.10 | 0 - | | | | | 01
DEC | 3.8 | 10.6 | 92 | K11000 | 730 | 44 | 8.0 | 12 | 3.5 | 3.5 | | 15
FEB | 1.6 | 13.4 | 95 | к6500 | 150 | 30 | 7.0 | 8.4 | 2.3 | 3.2 | | 02
MAY | 6.0 | 12.0 | 85 | 600 | 390 | 32 | 9.0 | 8.8 | 2.4 | 3.8 | | JUL
20 | 27 | 8.6 | 86 | K700 | 410 | 53 | 5.0 | 14 | 4.3 | 2.6 | | 20
SEP | 2.5 | 8.1 | 92 | 440 | 110 | 27 | 4.0 | 7.3 | 2.1 | 1.8 | | 14 | 3.4 | 7.7 | 79 | K840 | 900 | 27 | .00 | 7.6 | 2.0 | 3.5 | | DATE | SODIUM AD- SORP- TION RATIO (00931) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3)
(90410) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY)
(70302) | | OCT
01 | .2 | •9 | 36 | 5.7 | 6.4 | <.1 | 2.4 | 78 | 56 | 1170 | | DEC
_15 | •3 | .7 | 23 | 6.4 | 4.7 | <.1 | 1.5 | 62 | 41 | 1540 | | FEB
02 | •3 | 1.0 | 23 | 6.3 | 5.2 | <.1 | 2.1 | 68 | 44 | 1560 | | 20 | •2 | .8 | 48 | 7.0 | 2.7 | <.1 | 3•3 | 97 | 64 | 8410 | | JUL
20 | • 2 | •5 | 23 | 4.0 | 1.9 | .1 | 2.0 | 46 | 34 | 2930 | | SEP
14 | •3 | .6 | 27 | 5.0 | 4.1 | <.1 | .6 | 56 | 40 | 1290 | ## 05133500 RAINY RIVER AT MANITOU RAPIDS, MN--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | DA | ATE | NITR
GEN
NO2+N
DIS
SOLV
(MG/
AS N | I,
103 A!
S-
YED S
YL | VITRO-
GEN,
MMONIA
DIS-
SOLVED
(MG/L
AS N)
00608) | NIT
GEN,
MONI
ORGA
TOT
(MG
AS | A +
NIC
AL
/L
N) | PHOP
PHOP
TOT
(MG
AS | RUS,
PAL
P) | | US,
S-
VED
/L
P) | PHO
PHOR
ORT
DIS
SOLV
(MG/
AS P | US,
HO,
ED
L | | T,
-
DED
/L) | SED
MEN
DI
CHAR
SU
PEN
(T/D
(801 | T,
S-
GE,
S-
DED
AY) | SIE | SP.
VE
AM.
NER
AN
MM | |--|--|---|---|--|---|------------------------------|--|-----------------------|--|------------------------------|---|--------------------------------|---|----------------------------------|---|-------------------------------------|---------------------------------------|--| | OCT | :
l | _ | .10 | .070 | | .28 | | 100 | | 010 | | | | 26 | | 389 | | 76 | | DEC | | | 10 | .040 | | .46 | | 030 | | 010 | <. | 010 | | 4 | | 99 | | 67 | | FEB | | | 15 | •030 | | •59 | | 010 | | 010 | | 010 | | 12 | | 280 | | 89 | | MAY
20 | ?
) | | 24 | .020 | | .92 | | 070 | | 0 20 | <. | 010 | | | | | | | | | | <. | 10 | .030 | | .30 | | 0 20 | | 010 | <. | 010 | | 4 | | 284 | | 68 | | SEP
14 | · · · · | <. | 10 | .070 | 1 | .50 | | 040 | <. | 010 | <. | 010 | | 7 | | 169 |
| 82 | | DATE | TI | ME | ARSENI
TOTAI
(UG/I
AS AS | IC I
L S(
L (U
S) AS | BENIC
DIS-
DLVED
JG/L
B AS) | TO
RE
ER
(U
AS | IUM,
TAL
COV-
ABLE
G/L
BA) | DI
SOL
(U
AS | | TO
RE
ER
(U
AS | MIUM
TAL
COV-
ABLE
G/L
CD)
027) | D]
SO]
(U(
A S | MIUM
IS-
LVED
3/L
CD)
)25) | MI
TO
RE
ER
(U | RO-
UM,
TAL
COV-
ABLE
G/L
CR) | (UG | M,
S-
VED
I/L
CR) | COBALT,
TOTAL
RECOV-
ERABLE
(UG/L
AS CO)
(01037) | | OCT
01
FEB | 11 | 45 | | 3 | 3 | | <50 | | 2 | | 1 | | 1 | | 20 | | 10 | 2 | | 02
MAY | 11 | 30 | | 1 | 1 | | <100 | | 15 | | 1 | | <1 | | 20 | | 10 | <1 | | 20
SEP | 12 | 30 | | 2 | 1 | | <100 | | 39 | | 1 | | 1 | | 30 | | 20 | 2 | | 14 | 11 | 30 | | 1 | 1 | | 100 | | 15 | | 1 | | <1 | | <10 | | <10 | 3 | | DATE | COBA
DIS
SOLV
(UG
AS
(010 | ED
/L
CO) | COPPER
TOTAL
RECOVERABL
(UG/I
AS CV | (I COI
I- DI
LE S(I
LE (I
LE (I | PPER,
SS-
DLVED
JG/L
S CU)
1040) | TO
RE
ER
(U
AS | ON,
TAL
COV-
ABLE
G/L
FE)
045) | SO
(U
AS | ON,
IS-
LVED
G/L
FE)
046) | TO
RE
ER
(U
AS | AD,
TAL
COV-
ABLE
G/L
PB)
051) | SOI
(U)
AS | AD,
IS-
LVED
G/L
PB)
D49) | NE
TO
RE
ER
(U
AS | NGA-
SE,
TAL
COV-
ABLE
G/L
MN) | NES
DI
SOI
(UG | S-
VED
/L
MN) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG)
(71900) | | OCT
01
FEB | | 1 | | 6 | <1 | | 350 | | 100 | | 2 | | 1 | | 20 | | 14 | <.1 | | 02
MAY | | <1 | : | 26 | 4 | | 110 | | 46 | | 3 | | 1 | | 10 | | 5 | <.1 | | 20
SEP | | 2 | | 9 | 5 | | 1500 | | 180 | | 4 | | 3 | | 80 | | 9 | •5 | | 14 | | 2 | | 6 | 4 | | 200 | | 46 | | 4 | | 4 | | 20 | | 3 | .8 | | OCT
01
FEB
02
MAY
20
SEP | ATE | | IRY 5
S- I
FED I
(L
IG) A | ICKEL,
FOTAL
RECOV—
ERABLE
(UG/L
AS NI)
)1067)
7
<1
8 | (UG | VED
/L
NI) | SEL
NIU
TOT
(UG
AS
(011 | M,
AL
/L
SE) | SEL
NIU
DI
SOL
(UG
AS
(011 | M,
S-
VED
/L
SE) | SILV
TOT
REC
ERA
(UG
AS
(010 | AL
OV-
BLE
/L
AG) | SILV
DI
SOL
(UG
AS
(010 | S-
VED
/L
AG) | ZIN
TOT
REC
ERA
(UG
AS
(010 | AL
OV-
BLE
/L
ZN) | ZIN
DI
SOL
(UG
AS
(010 | S-
VED
/L
ZN) | | | | | | _ | | | | | | | | | | | | | | | ## 05133500 RAINY RIVER AT MANITOU RAPIDS, MN--Continued SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | DAY | MAX | MIN
OCTOBER | MEAN | MAX | MIN
NOVEMBER | MEAN | М | AX
DE | MIN
CEMBER | MEAN | MAX | MIN
JANUARY | MEAN | |---|--|---|--|---|--|---|---|--|--|--|--|--|---| | 1
2
3
4
5 | 125
122
125
117
112 | 121
116
119
111
107 | 123
118
123
114
110 | 93
90
93
92
95 | 85
87
87
89
92 | 89
88
90
91
93 | 1 | 22
22
20
19
20 | 118
113
90
112
113 | 120
117
114
115
116 | 128
141
141
129
122 | 122
128
131
119
116 | 124
137
138
122
119 | | 6
7
8
9
10 | 112
106
105
114
122 | 107
103
101
103
113 | 110
105
103
109
118 | 96
99
97
99
101 | 91
95
92
95
97 | 93
97
95
97
99 | 1
1
1 | 18
05
19
16
22 | 73
101
103
109
117 | 93
103
107
112
120 | 120
119
127
123
123 | 114
114
117
118
120 | 115
117
121
120
121 | | 11
12
13
14
15 | 132
141
443
148
151 | 121
133
140
142
144 | 127
136
141
145
147 | 101
103
104
107
105 | 99
101
101
103
104 | 100
102
103
104
104 | 1
1 | 19
18
21
22
29 | 103
113
117
118
123 | 113
116
118
120
125 | 121
117
114
113
121 | 112
111
111
110
112 | 117
114
112
111
117 | | 16
17
18
19
20 | 145
144
118
96
97 | 140
135
93
92
93 | 143
140
96
94
94 | 107
107
105
106
107 | 105
105
103
104
105 | 106
106
105
105
106 | 1
1 | 35
38
37
36
35 | 129
132
136
132
132 | 133
134
136
133
134 | 119
112
109
111
108 | 109
.106
105
108
105 | 115
109
107
110
107 | | 21
22
23
24
25 | 96
95
99
90
91 | 93
90
88
89
88 | 94
93
91
89
89 | 111
110
102
107
111 | 106
99
96
100
108 | 109
106
99
104
110 | 1 | 35
33
39
43 | 132
131
130
137
143 | 134
132
134
141
144 | 112
117
114
115
110 | 106
111
108
111
105 | 108
114
111
114
107 | | 26
27
28
29
30
31 | 92
90
91
100
93
93 | 87
88
88
90
88
90 | 89
89
89
92
91 | 110
113
119
122
125 | 107
111
113
118
119 | 108
112
117
120
122 | 1
1
1
1 | 37
35
29 | 142
138
132
131
124
123 | 145
146
134
134
126
124 | 110
108
108
108
110
109 | 107
100
101
102
108
98 | 109
105
105
104
109
102 | | MONTH | 151 | 87 | 109 | 125 | 85 | 103 | | | 73 | 125 | 141 | 98 | 114 | | | | | | | | | | | | | | | | | DAY | MAX | MIN
FEBRUARY | MEAN | MAX | MIN
MARCH | MEAN | M. | ΙX | MIN
APRIL | ME AN | MAX | MIN
MAY | MEAN | | DAY
1
2
3
4
5 | 107
103
100
106
107 | | | MAX
108
104
108
108 | | MEAN 105 99 105 106 106 | M.
1.
1.
1.
1.
1. | 27
11
58
53 | | | MAX
117
120
123
123
125 | | MEAN 116 117 120 122 123 | | 1
2
3
4 | 107
103
100
106 | FEBRUARY
97
100
90 | 100
101
93
98
106 | 108
104
108 | MARCH
103
95
100
104 | 105
99
105
106 | 1
1
1
1
1 | 27
11
58
53 | APRIL
122
128
138
120 | 1 23
1 35
1 50
1 50 | 117
120
123
123
125
123 | MAY
115
115
116
120 | 116
117
120
122 | | 1
2
3
4
5
6
7
8
9 | 107
103
100
106
107
105
106 | 97
100
90
93
104 | 100
101
93
98
106 | 108
104
108
108 | MARCH
103
95
100
104
105
105
106
107 | 105
99
105
106
106
108
110
111
113 | 1
1.
1.
1.
1.
1.
1. | 27
11
18
18
18
13
13
13
14
19
19
18
18
18
18
18
19
19
19
19
19
19
19
19
19
19
19
19
19 | APRIL
122
128
138
120
119 | 123
135
150
150
125
144
158
154
147 | 117
120
123
123
125
123 | MAY 115 116 120 121 120 116 114 112 | 116
117
120
122
123
122
118
115 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 107
103
100
106
107
105
106
113
111
114
116
115 | 97
100
90
93
104
93
92
93
93
103
105
111
108
100 | 100
101
93
98
106
102
97
101
102
107 | 108
104
108
108
111
111
115
116
116
113
122
113 | MARCH 103 95 100 104 105 106 107 107 108 109 112 109 100 | 105
99
105
106
106
111
113
113
111
117
111
105 | 1
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1. | 27
11
18
18
18
18
18
18
18
18
18
18
18
18 | APRIL
122
128
138
120
119
133
153
145
144
144
147 | 123
135
150
150
125
144
154
147
147
146
149
145 | 117
120
123
123
125
123
121
116
115
117
117
118
121
131 | MAY 115 116 120 121 120 116 114 112 112 113 113 113 114 100 |
116
117
120
122
123
123
115
115
115
115
115
116
106 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 107
103
100
106
107
105
106
113
111
114
115
107
104 | 97 100 90 93 104 93 92 93 103 105 111 108 100 102 | 100
101
93
98
106
102
97
101
102
107
109
113
113
102
104 | 108
104
108
108
111
111
115
116
116
113
1122
113
112
110
110
105
108 | MARCH 103 95 100 104 105 105 106 107 107 108 109 112 109 100 104 108 105 103 | 105
99
105
106
106
108
110
111
113
113
111
117
111
105
108 | 1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1 | 27
11
18
18
18
18
18
19
19
19
18
18
18
18
18
18
18
18
18
18
18
18
18 | APRIL
122
128
138
120
119
133
153
145
144
147
147
147
133
128 | 123
135
150
150
1525
144
1547
147
149
149
149
149
141
133
138
141
142
149 | 117
120
123
123
125
121
116
117
117
118
121
131
116 | MAY 115 115 116 120 121 120 116 114 112 112 113 114 100 101 | 116
117
120
122
123
122
118
115
115
115
116
106
103
101
101
103
107 | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 223 24 | 107
103
100
106
107
105
106
113
111
114
115
107
104
113
115
108
111
112
108
111 | 97 100 90 93 104 93 92 93 103 105 111 108 100 102 99 106 105 103 102 | 100
101
93
98
106
102
97
101
102
107
109
113
113
102
104
105
110
105
106 | 108
104
108
108
111
111
115
116
116
113
1122
113
112
110
110
105
108
107 | MARCH 103 95 100 104 105 105 106 107 107 108 109 112 109 100 104 108 105 106 107 100 104 108 109 1100 104 108 105 106 107 108 | 105
99
105
106
106
108
110
111
113
113
111
105
108
109
107
104
107
104
107
104 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | 27
18
18
18
18
18
18
18
18
18
18
18
18
18 | APRIL
122
128
138
120
119
133
145
145
144
147
147
147
133
128
136
135
113
93
92
91
92
91
92
91 | 123
1350
1500
1525
1488
15477
149
149
149
149
149
149
149
149
149
149 | 117
120
123
125
121
116
117
117
117
118
121
131
116
102
108
111
112
101
104
121 | MAY 115 115 116 120 121 120 116 114 112 113 114 100 101 99 100 101 105 107 102 98 98 97 | 116
117
120
122
123
122
118
115
113
115
115
116
106
103
101
101
103
107
109 | 05133500 RAINY RIVER AT MANITOU RAPIDS, MN--Continued SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | DAY | MAX | MIN | MEAN | |---|---|---|--|---|--|--|--|--|---|---|--|--| | | | JUNE | | | JULY | | | AUG US' | r | | SEPTEME | BER | | 1
2
3
4
5 | 113
116
107
108
113 | 109
106
103
106
108 | 110
110
105
108
111 | 156
166
164
152
147 | 118
146
134
132
128 | 142
156
150
142
134 | 87
92
85
90
89 | 73
72
76
75
74 | 76
80
82
79
79 | 118
113
118
115
116 | 93
99
100
101
99 | 102
104
109
107
104 | | 6
7
8
9
10 | 114
111
113
112
113 | 110
105
105
108
108 | 112
110
110
111
111 | 135
146
151
144
126 | 126
121
128
111
116 | 130
134
135
125
121 | 88
96
93
97
105 | 74
77
78
81
88 | 79
88
82
88
98 | 110
135
128
125
120 | 98
101
99
99
104 | 104
115
116
111
110 | | 11
12
13
14
15 | 110
108
107
106
106 | 106
105
103
104
101 | 108
106
105
105
103 | 137
137
126
132
110 | 109
108
99
94
93 | 127
124
116
114
99 | 103
94
117
117 | 86
87
92
104
95 | 90
91
104
109
103 | 120
116
119
99
99 | 102
100
93
97
96 | 108
107
97
99
97 | | 16
17
18
19
20 | 105
103
103
103
106 | 102
99
98
100
102 | 104
102
100
102
104 | 112
110
109
106
96 | 92
87
76
86
78 | 96
95
94
92
87 | 104
107
111
110
112 | 96
93
94
100
102 | 99
97
101
104
106 | 100
103
109
112
112 | 97
98
103
109
111 | 99
100
106
110
111 | | 21
22
23
24
25 | 114
117
128
134
134 | 102
106
114
115
117 | 105
111
122
122
122 | 119
108
109
106
104 | 85
92
85
88
85 | 109
100
98
96
91 | 116
114
114
110
120 | 98
100
97
99
100 | 107
107
102
105
111 | 116
117
120
117
115 | 111
115
116
111
111 | 114
116
118
115
113 | | 26
27
28
29
30
31 | 149
144
144
150
141 | 116
122
124
126
119 | 132
137
133
133
131 | 109
100
95
99
94
90 | 85
82
85
75
77
72 | 95
88
92
83
83
77 | 124
115
110
112
107
109 | 99
101
97
90
88
91 | 104
108
101
100
101
99 | 115
115
123
123
122 | 113
113
113
119
116 | 114
113
119
121
119 | | MONTH
YEAR | 150
166 | 98
72 | 113
111 | 166 | 72 | 111 | 124 | 72 | 96 | 135 | 93 | 109 | | | | | | | | | | | | | | | | | | T | EMPERATU | RE, WATER (I | DEG. C), | WATER Y | EAR OCTOBER | 1981 TO | SEPTEMBE | R 1982 | | | | DAY | MAX | MIN | EMPERATUI
MEAN | RE, WATER (I | DEG. C),
MIN | WATER Y | EAR OCTOBER | 1981 TO
MIN | SEPTEMBE: | R 1982
MAX | MIN | MEAN | | | | MIN
OCTOBE | MEAN
R | MAX | MIN
NOVEMBE | ME AN | MAX |
MIN
DECEMB | MEAN
ER | MAX | JANUA | RY | | DAY
1
2
3
4
5 | 8.5
9.0
8.0
7.5 | MIN | MEAN | | MIN | MEAN | | MIN | MEAN | | | | | 1 | 8.5
9.0
8.0 | MIN
OCTOBE
6.0
6.0
6.5 | MEAN
R
7.5
7.5 | MAX
5.0
5.0
6.0 | MIN
NOVEMBE
3.5
4.0
4.0 | MEAN ER 4.5 4.5 4.5 5.0 | .0
.5
.0 | MIN DECEMB | ME AN ER .0 .0 .0 .0 | .0
.0
.0 | JANUAR
.0
.0
.0 | .0
.0
.0 | | 1
2
3
4
5
6
7
8
9 | 8.5
9.0
8.0
7.5
8.0
9.0
8.5
8.0 | MIN OCTOBE 6.0 6.0 6.5 7.5 7.5 7.5 7.5 | MEAN R 7.5 7.5 7.5 8.0 8.0 8.0 | 5.0
5.0
5.0
6.0
5.5
4.5
4.0
2.0 | MIN
NOVEMBE
3.5
4.0
4.5
4.0
3.5
4.0 | MEAN ER 4.5 4.5 5.0 5.0 4.0 4.0 3.0 | .0
.5
.0
.0
.0 | MIN DECEMBI .0 .0 .0 .0 .0 .0 .0 .0 .0 | MEAN .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MAX .0 .0 .0 .0 .0 .0 .0 .0 | JANUAH .0 .0 .0 .0 .0 .0 .0 .0 | .0
.0
.0
.0
.0
.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 8.5
9.0
8.5
9.5
9.5
9.5
9.5
9.0
7.5
9.0 | MIN OCTOBE 6.0 6.0 6.5 7.5 7.5 7.5 7.5 8.0 8.5 9.0 | MEAN R 7.5 7.5 7.5 8.0 8.0 8.0 7.5 8.0 9.5 | MAX
55.0
55.0
6.0
5.5
4.5
4.0
2.0
2.5
3.5
5.0 | MIN
NOVEMBE
3.5
4.0
4.0
4.5
4.0
3.5
3.0
2.0
1.5
1.5
2.0 | MEAN ER 4.5 4.5 5.0 4.0 3.0 2.0 1.5 | .0
.5
.0
.0
.0
.0 | MIN DECEMBI .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MEAN .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0
.0
.0
.0
.0
.0 | JANUAI | .0
.0
.0
.0
.0
.0
.0
.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 50050
.50050
.5055
.5055
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550
.550 | MIN OCTOBE 6.0 6.5 7.5 7.5 7.5 7.5 8.0 8.5 9.0 8.6 6.0 6.0 | MEAN 7.5 7.5 8.0 8.0 8.0 7.5 8.5 9.5 9.0 9.0 7.0 6.5 | MAX 5.0 5.0 6.0 5.5 4.5 4.0 2.0 2.5 3.5 4.0 4.0 | MIN
NOVEMBE
3.5
4.0
4.0
4.0
4.0
53.0
1.5
1.5
2.0
3.5
2.0
3.5
2.0
3.5
2.0
3.5
2.0
3.5
2.0
3.5
2.0
3.5
2.0
3.5
2.0
3.5
2.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3 | MEAN ER 4.5 5.0 4.0 3.0 2.0 3.5 4.0 3.5 4.0 3.5 3.5 4.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3 | .0
.5
.0
.0
.0
.0
.0 | MIN DECEMBI .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MEAN .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | JANUAI .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0
.0
.0
.0
.0
.0
.0
.0
.0 | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | 50050 05055 00555 55050 5500
898.78 9888.78 99999 99877 5432 | MIN OCTOBE 6.0 6.5 7.5 7.5 7.5 7.5 8.5 9.0 8.0 6.0 6.5 4.5 3.0 | MEAN R 7.55 7.55 8.0 8.0 8.0 8.55 9.55 9.0 9.0 9.0 6.55 4.0 2.55 | MAX 55.0 55.0 6.0 5.5 4.5 4.0 2.0 2.0 2.5 3.5 4.0 4.0 3.5 5.1 | MIN NOVEMBER 34.0 4.0 5.0 4.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6 | MEAN ER 4.55 5.00 4.00 32.05 1.55 2.00 33.55 3.55 4.55 0.00 0.00 | MAX .0 .5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MIN DECEMBI .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MEAN .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | JANUAI .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0 | ## 05133500 RAINY RIVER AT MANITOU RAPIDS, MN--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | DAY | MAX | MIN | MEAN | MAX | MIN | MEAN | 1 | MAX | MIN | MEAN | XAM | MIN | MEAN | |---|--|---|--|--|--|--|---|--|---|--|--|---|--| | | | FEBRUAR' | Y | | MARCH | | | | APRIL | | | MAY | | | 1
2
3
4
5 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | | •5
•0
•0
•0 | .0
.0
.0 | .0
.0
.0 | 10.0
10.5
11.5
12.0
11.5 | 8.5
9.0
9.5
11.0
11.0 | 9.5
10.0
10.5
11.5
11.5 | | 6
7
8
9
10 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | | .0
1.0
1.5
1.0 | .0
.0
.5 | .0
.5
1.0 | 11.5
10.5
10.0
10.5
11.0 | 10.5
9.5
9.0
9.5
9.5 | 11.0
10.0
9.5
9.5
10.0 | | 11
12
13
14
15 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | | 2.0
1.0
2.5
3.0
2.0 | .0
.5
.5
1.0 | .5
1.0
1.5
2.0
1.5 | 11.0
11.0
10.5
10.5
12.0 | 10.5
10.0
10.5
10.5
10.5 | 10.5
10.5
10.5
10.5
11.0 | | 16
17
18
19
20 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | | 1.5
1.0
1.5
1.5 | 1.0
.5
.0
.0 | 1.0
.5
.5
.5 | 12.5
13.0
13.5
13.5 | 12.0
12.0
13.0
13.0
12.5 | 12.0
12.5
13.5
13.5
13.0 | | 21
22
23
24
25 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | | 1.5
2.0
3.5
5.5
6.5 | .0
2.0
3.5
5.5 | .5
1.0
3.0
4.5
6.0 | 13.5
14.0
14.5
15.0
16.0 | 13.0
13.0
13.0
14.0
15.0 | 13.0
13.5
14.0
14.5
15.5 | | 26
27
28
29
30
31 | .0 | .0
.0
.0
 | .0
.0
.0 | .0
.5
.0
.5 | .0
.0
.0
.0 | .0
.0
.0
.0 | | 7.5
8.0
8.5
9.0 | 6.5
7.0
7.0
7.5
8.5 | 7.0
7.5
7.5
8.0
9.0 | 16.5
17.0
18.5
18.5
18.0
16.5 |
15.5
15.5
17.0
18.0
17.0
14.0 | 16.0
16.0
18.0
18.0
17.5 | | MONTH | .0 | •0 | •0 | •5 | •0 | .0 | | 9•5 | •0 | 2.0 | 18.5 | 8.5 | 12.5 | | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | MAX | MIN | MEAN | | MAX | MIN | MEAN | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | MEAN | : | MAX | MIN
AUGUST | MEAN | MAX | MIN
SEPTEMB | | | DAY
1
2
3
4
5 | MAX
14.5
13.0
13.5
14.0
15.0 | | MEAN 14.0 12.5 13.0 13.5 14.5 | MAX
21.0
22.0
21.5
22.5
22.5 | | MEAN 19.0 20.0 20.5 21.0 21.5 | 2
2
2
2 | 1.5
1.0
1.0
1.5
2.5 | | MEAN 21.0 20.5 20.5 21.0 21.5 | MAX
18.5
17.5
18.0
19.5
18.5 | | | | 1
2
3
4 | 14.5
13.0
13.5
14.0 | JUNE 12.5 12.0 12.0 12.5 | 14.0
12.5
13.0
13.5 | 21.0
22.0
21.5
22.5 | JULY
17.0
18.5
20.0
19.5 | 19.0
20.0
20.5
21.0 | 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | 1.5
1.0
1.0 | AUGUST
20.0
19.5
20.5
20.5 | 21.0
20.5
20.5
21.0 | 18.5
17.5
18.0
19.5 | SEPTEMB
16.5
16.5
15.5
16.0 | 17.5
17.0
17.0
17.5 | | 1
2
3
4
5
6
7
8
9 | 14.5
13.0
13.5
14.0
15.0 | JUNE 12.5 12.0 12.0 12.5 13.5 13.5 13.5 13.5 | 14.0
12.5
13.0
13.5
14.5
14.0
13.5
13.5 | 21.0
22.0
21.5
22.5
22.5
21.5
21.5
21.5 | JULY 17.0 18.5 20.0 19.5 20.0 21.0 20.0 19.0 17.5 | 19.0
20.0
20.5
21.0
21.5
22.0
21.0
20.0
18.5 | 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | 1.5
1.0
1.0
1.5
2.5
2.5
3.0
2.5 | AUGUST 20.0 19.5 20.5 20.5 21.0 21.5 22.0 21.0 19.0 | 21.0
20.5
20.5
21.0
21.5
22.0
22.5
22.0 | 18.5
17.5
18.0
19.5
18.5 | SEPTEMB 16.5 16.5 15.5 16.0 16.5 15.5 15.5 17.5 | 17.5
17.0
17.0
17.5
17.5
17.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 14.5
13.0
13.5
14.0
15.0
14.5
14.5
14.5
14.5
14.5 | JUNE 12.5 12.0 12.0 12.5 13.5 13.5 13.6 13.5 13.0 14.0 14.0 14.5 15.0 | 14.0
12.5
13.0
13.5
14.5
14.0
13.5
13.5
14.0
14.0
14.0
14.5
14.5 | 21.0
22.0
21.5
22.5
22.5
21.5
21.5
21.5
21.5
21.5 | JULY 17.0 18.5 20.0 19.5 20.0 21.0 20.0 19.0 17.5 17.0 18.0 19.0 20.0 19.5 | 19.0
20.0
20.5
21.0
21.5
22.0
21.0
20.0
18.5
18.0
19.5
20.5
20.5 | 2 | 1.5
1.0
1.0
1.5
2.5
2.5
2.5
1.0
0.0
0.5
1.5
1.5 | AUGUST 20.0 19.5 20.5 20.5 21.0 21.5 22.0 21.0 19.0 18.5 18.5 19.5 19.5 | 21.0
20.5
20.5
21.0
21.5
22.0
22.5
22.0
20.0
19.0
20.0
20.0
20.5 | 18.5
17.5
18.0
19.5
18.0
19.5
20.5
20.5 | SEPTEMB 16.5 16.5 15.5 16.5 15.5 17.5 18.5 18.5 16.5 14.5 | 17.5
17.0
17.0
17.5
17.5
17.5
17.0
18.0
19.0
19.5 | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | 14.50
13.05
13.00
14.00
14.50
14.50
14.50
14.50
16.00
15.50
15.50 | JUNE 12.5 12.0 12.0 12.5 13.5 13.5 13.5 13.0 14.0 14.5 15.0 15.0 | 14.0
12.5
13.0
13.5
14.5
14.0
13.5
13.5
14.0
14.5
14.5
15.0
15.5 | 21.0
22.0
21.5
22.5
22.5
21.5
21.5
21.5
21.5
21.5 | JULY 17.0 18.5 20.0 19.5 20.0 21.0 20.0 19.0 17.5 17.0 18.0 19.0 20.0 19.5 20.0 21.6 21.7 20.0 21.8 20.0 21.8 | 19.0
20.0
20.5
21.0
21.5
22.0
20.0
18.5
18.5
20.5
20.5
20.5
20.5
20.5 | 2 | 1.0
1.0
1.0
1.0
5
5
5
0
1.0
5
5
0
0
1.0
5
5
0
0
1.0
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | AUGUST 20.0 19.5 20.5 21.0 21.5 22.0 21.0 19.0 19.5 19.5 19.5 20.0 20.5 20.5 20.5 | 21.0
20.5
20.5
21.0
21.5
22.0
22.5
22.0
20.0
20.0
20.5
21.0
21.5
21.5
21.5
21.5
21.5 | 18.5
17.5
18.0
19.5
18.0
19.5
20.5
20.5
20.5
16.5
16.0
15.0 | SEPTEMB 16.5 16.5 16.5 16.5 16.5 16.5 17.5 18.5 18.5 14.0 13.0 13.0 | 17.5
17.0
17.5
17.5
17.5
17.0
18.0
19.5
19.5
19.5
14.5
14.0
14.0 | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 5 16 17 18 19 20 21 22 3 24 | 14.05
14.05
14.05
14.05
14.05
14.05
14.00
155.05
155.05
155.05
156.05
17.05 | JUNE 12.5 12.0 12.0 12.5 13.5 13.5 13.5 13.0 14.0 14.5 15.0 15.0 14.5 15.0 14.5 | 14.0
12.5
13.0
13.5
14.5
14.0
13.5
14.0
14.5
14.5
15.0
15.0
15.0
15.0
15.0
17.0 | 21.0
22.0
21.5
22.5
22.5
21.5
21.5
21.5
21.5
21.5 | JULY 17.0 18.5 20.0 19.5 20.0 21.0 20.0 19.5 17.0 18.0 19.5 20.0 21.5 19.0 21.5 19.0 20.5 21.0 21.5 | 19.0
20.0
20.5
21.0
21.5
22.0
20.5
18.0
19.5
20.5
20.5
20.5
20.5
21.5
20.5
20.5
21.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 1.5
1.0
11.5
5
23.5
1.0
0
11.5
5
23.5
1.0
0
11.5
5
0
11.5
5
0
11.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1. | AUGUST 20.0 19.5 20.5 21.0 21.5 22.0 21.0 19.0 18.5 19.5 20.0 20.5 20.0 20.5 20.0 19.0 19.0 19.0 | 21.0
20.5
20.5
21.0
21.5
22.0
22.5
22.0
20.0
20.0
20.0
21.5
21.0
21.5
21.5
21.5
21.5
21.5
21.5
21.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0 | 18.5
17.5
18.0
19.5
18.0
19.5
20.5
20.5
20.5
16.5
16.0
14.5
14.5
14.0
15.0
14.5
14.0 | SEPTEMB 16.5 16.5 15.5 16.5 16.5 17.5 18.5 18.5 14.0 13.0 12.0 12.0 12.0 | 17.5
17.0
17.5
17.5
17.5
17.0
18.0
19.0
19.5
19.0
15.5
14.0
14.0
14.0
13.0 | #### 05134200 RAPID RIVER NEAR BAUDETTE, MN LOCATION.--Lat 48°32'10", long 94°33'45", in SEiNE; sec.1, T.158 N., R.31 W., Lake of the Woods County, Hydrologic Unit 09030007, on left bank 20 ft (6 m) upstream from bridge on State Highway 72, 1.2 mi (1.9 km) downstream from North Branch Rapid River, and 12 mi (19 km) south of Baudette. DRAINAGE AREA .-- 543 mi² (1,406 km²). PERIOD OF RECORD. -- October 1956 to current year. GAGE.--Water-stage recorder. Datum of gage is 1,093.92 ft (333.427 m) National Geodetic Vertical Datum of 1929 (Minnesota Department of Transportation bench mark). REMARKS .-- Records fair except those for winter period, which are poor. AVERAGE DISCHARGE.--26 years, 311 ft 3 /s (8.808 m 3 /s), 7.78 in/yr (198 mm/yr). EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 7,550 ft 3 /s (214 m 3 /s) Apr. 26, 1979, gage height, 21.13 ft (6.440 m); no flow Dec. 20, 1976 to Mar. 9, 1977. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of May 11, 1950, reached a stage of 21.1 ft (6.431 m), from information by local residents and Minnesota Department of Transportation, discharge, about 7,500 ft³/s (210 m³/s). EXTREMES FOR CURRENT YEAR.--Maximum discharge, 4,000 ft³/s (113 m³/s) Apr. 16, gage height, 15.4 ft (4.69 m), from high-water mark (backwater from ice); minimium daily discharge, 14 ft³/s (0.40 m³/s) Feb. 24 to March 26; minimum gage height, 2.49 ft (0.759 m) Mar. 9. | | | DISCHARGE | , IN CU | BIC FEET | PER SECOND | , WATER S
EAN VALUE | YEAR OCTO
S | BER 1981 | TO SEPTEM | IBER 1982 | | | |--|--|---|---|--------------------------------|--------------------------------|----------------------------------|---|--|---|---|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 382
595
605
6 7 5
771 | 455
432
405
385
370 | 135
130
125
120
115 | 32
31
29
28
27 | 15
15
15
15
15 | 14
14
14
14
14 | 50
60
60
60
55 | 878
828
786
937
1410 | 425
395
352
312
280 | 128
121
107
94
182 | 385
360
328
287
249 | 192
196
194
186
180 | | 6
7
8
9
10 | 866
857
768
692
695 | 352
332
318
289
267 | 110
105
100
95
90 | 26
24
23
22
22 | 15
15
15
15
15 | 14
14
14
14
14 | 55
55
50
50
50 | 1460
1320
1190
1090
1020 | 257
294
422
430
495 | 452
450
405
382
468 | 240
308
285
259
240 | 164
140
122
110
100 | | 11
12
13
14
15 | 703
661
661
653
613 | 255
243
243
241
243 | 85
80
80
75
73 | 21
21
20
20
19 | 15
15
15
15
15 | 14
14
14
14 | 100
500
1000
2000
3600 | 1070
1120
1070
1050
1130 | 515
472
425
388
365 | 442
392
335
278
629 | 212
184
165
147
132 | 93
88
90
97
92 | | 16
17
18
19
20 | 572
548
572
578
565 | 328
400
405
382
338 | 70
67
64
62
59 | 19
18
18
17
17 | 15
15
15
15
15 | 14
14
14
14
14 | 3700
3250
2820
2450
2110 | 1410
1590
1690
1800
1770 | 328
308
280
247
240 | 1230
1310
1280
1020
815 | 122
111
118
204
263 | 90
97
125
132
132 | | 21
22
23
24
25 | 542
510
485
458
432 |
243
250
230
210
195 | 56
53
50
47
45 | 17
16
16
16
16 | 15
15
15
14
14 | 14
14
14
14
14 | 1830
1630
1520
1420
1340 | 1610
1380
1190
1030
892 | 257
257
229
217
204 | 709
618
523
520
613 | 249
348
470
472
440 | 131
121
110
106
106 | | 26
27
28
29
30
31 | 402
458
442
458
468 | 180
170
160
150
140 | 43
41
39
37
35
33 | 16
15
15
15
15 | 14
14
14
 | 14
15
16
20
25
35 | 1230
1130
1040
975
914 | 786
706
626
560
500
452 | 183
162
148
148
146 | 550
482
430
405
438
415 | 410
360
303
251
215
200 | 99
103
332
809
966 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 18149
585
866
382
1.08
1.24 | 8611
287
455
140
•53
•59 | 2319
74.8
135
33
.14
.16 | 626
20.2
32
15
.04 | 415
14.8
15
14
.03 | 475
15.3
35
14
.03 | 35104
1170
3700
50
2.16
2.40 | 34351
1108
1800
452
2.04
2.35 | 9181
306
515
146
•56
•63 | 16223
523
1310
94
.96
1.11 | 8317
268
472
111
•49
•57 | 5503
183
966
88
•34
•38 | | CAL YR
WTR YR | | | | | IAX 1940
IAX 3700 | MIN 8.3
MIN 14 | CFSM
CFSM | .37 IN 5 | | | | | #### 05140520 LAKE OF THE WOODS AT WARROAD, MN #### (International gaging station) LOCATION.--Lat 48°54'15", long 95°18'57", in SW\sE\forall sec.29, T.163 N., R.36 W., Roseau County, Hydrologic Unit 09030009, on left bank of Warroad River in Warroad, 300 ft (91 m) downstream from Canadian National railroad bridge, 1,000 ft (305 m) downstream from bridge on State Highway 11, and 4,000 ft (1,200 m) upstream from mouth of Warroad River. DRAINAGE AREA.--27,200 mi² (70,400 km²). PERIOD OF RECORD. -- April to September 1978 (monthend elevations only), October 1978 to current year. Records collected prior to April 1978 are in reports of the Water Survey of Canada. GAGE.--Water-stage recorder. Datum of gage is 1,000.00 ft (304.800 m) Lake of the Woods datum; gage readings have been reduced to elevations based on Lake of the Woods datum. REMARKS.--Runoff conditions of the Warroad River can affect water levels obtained at this station. Water level subject to fluctuation caused by change in direction and velocity of wind and seiches. COOPERATION. -- This station is one of the International gaging stations maintained by the United States under agreement with Canada. EXTREMES FOR PERIOD OF RECORD.—Maximum elevation, 1,062.36 ft (323.807 m) Sept. 12, 1978; maximum daily, 1,061.84 ft (323.649 m) Sept. 12, 1978; minimum elevation recorded, 1,055.94 ft (321.851 m) Sept. 4, 1980; minimum daily recorded, 1,056.52 ft (322.027 m) Apr. 15, 1981. EXTREMES FOR CURRENT YEAR.--Maximum elevation, 1,061.36 ft (323.503 m) Aug. 8; maximum daily, 1,060.97 ft (323.384 m) Aug. 1; minimum 1,057.61 ft (322.360 m) Mar. 13; minimum daily, 1057.66 ft (322.375 m) Mar. 13. # ELEVATION, IN FEET LAKE OF THE WOODS DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 MEAN VALUES | | | | | | | MEAN VAL | UES | | | | | | |----------------------------------|--|---|--|--|---|--|---|--|---|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 1059.30
1058.95
1058.96
1058.98
1058.95 | 1058.97
1059.07
1058.96
1058.92
1058.94 | 1058.95
1058.90
1058.89
1058.83
1058.89 | 1058.70
1058.72
1058.68
1058.70
1058.67 | 1058.22
1058.18
1058.17
1058.14
1058.13 | 1057.75
1057.77
1057.77
1057.74
1057.73 | 1057.77
1057.83
1057.79
1057.81
1057.80 | 1059.02
1059.04
1059.02
1059.08
1059.14 | 1060.33
1060.45
1060.27
1060.28
1060.29 | 1060.38
1060.37
1060.43
1060.38
1060.46 | 1060.97
1060.89
1060.84
1060.80
1060.88 | 1060.38
1060.31
1060.34
1060.24
1060.57 | | 6
7
8
9
10 | 1058.99
1058.99
1059.08
1058.99
1059.04 | 1058.97
1058.97
1058.95
1058.66
1058.90 | 1058.90
1058.84
1058.85
1058.85
1058.87 | 1058.64
1058.66
1058.62
1058.59
1058.55 | 1058.11
1058.07
1058.06
1058.04
1058.03 | 1057.72
1057.74
1057.73
1057.75
1057.73 | 1057.80
1057.80
1057.79
1057.80
1057.78 | 1059.00
1059.04
1059.33
1059.47
1059.45 | 1060.43
1060.28
1060.52
1060.63
1060.39 | 1060.34
1060.32
1060.31
1060.50
1060.42 | 1060.91
1060.76
1060.81
1060.95
1060.86 | 1060.35
1060.18
1060.09
1060.16
1060.28 | | 11
12
13
14
15 | 1059.09
1059.07
1058.80
1058.96
1059.00 | 1058.94
1058.84
1058.88
1058.99
1058.98 | 1058.85
1058.83
1058.82
1058.80
1058.80 | 1058.57
1058.58
1058.57
1058.55
1058.49 | 1057.99
1057.99
1057.97
1057.97 | 1057.73
1057.74
1057.66
1057.73
1057.74 | 1057.82
1057.84
1057.89
1058.05
1058.13 | 1059.42
1059.50
1059.55
1059.62
1059.82 | 1060.48
1060.47
1060.54
1060.60 | 1060.36
1060.34
1060.44
1060.47
1060.52 | 1060.78
1060.68
1060.69
1060.73
1060.62 | 1060.22
1060.31
1060.29
1060.60
1060.21 | | 16
17
18
19
20 | 1058.91
1059.04
1059.18
1058.90
1059.11 | 1058.88
1058.95
1059.26
1059.18
1059.02 | 1058.79
1058.78
1058.79
1058.79
1058.79 | 1058.48
1058.50
1058.48
1058.43
1058.44 | 1057.95
1057.93
1057.87
1057.87
1057.83 | 1057.72
1057.72
1057.72
1057.74
1057.73 | 1058.27
1058.09
1058.18
1058.23
1058.26 | 1059.83
1059.79
1059.81
1060.05
1060.11 | 1060.54
1060.76
1060.58
1060.59
1060.57 | 1060.55
1060.08
1060.47
1060.58
1060.57 | 1060.72
1060.69
1060.65
1060.68
1060.65 | 1060.01
1060.13
1059.93
1060.17
1060.11 | | 21
22
23
24
25 | 1058.96
1059.03
1058.91
1058.79
1058.90 | 1058.94
1058.93
1058.89
1058.88
1059.06 | 1058.77
1058.76
1058.76
1058.76
1058.76 | 1058.43
1058.43
1058.39
1058.38
1058.36 | 1057.85
1057.81
1057.82
1057.81
1057.79 | 1057.68
1057.70
1057.71
1057.69
1057.72 | 1058.32
1058.38
1058.46
1058.54
1058.65 | 1060.08
1060.15
1060.16
1060.16
1060.19 | 1060.63
1060.57
1060.58
1060.58 | 1060.74
1060.75
1060.66
1060.69
1060.72 | 1060.60
1060.66
1060.62
1060.54
1060.49 | 1059.97
1059.94
1060.13
1060.17
1059.87 | | 26
27
28
29
30
31 | 1058.82
1059.07
1059.16
1059.07
1058.92
1058.83 | 1059.04
1058.93
1058.79
1058.77
1058.83 | 1058.76
1058.72
1058.71
1058.70
1058.71
1058.69 | 1058.37
1058.31
1058.26
1058.28
1058.25
1058.25 | 1057.79
1057.81
1057.78 | 1057.73
1057.74
1057.73
1057.75
1057.76
1057.71 | 1058.71
1058.77
1058.83
1058.87
1058.92 | 1060.27
1060.29
1060.34
1060.25
1060.35
1060.26 | 1060.43
1060.48
1060.47
1060.58
1060.42 | 1060.76
1060.71
1060.70
1060.74
1060.72
1060.68 | 1060.49
1060.43
1060.47
1060.39
1060.38
1060.38 | 1059.87
1060.33
1060.28
1059.79
1059.79 | | MEAN
MAX
MIN | 1058.99
1059.30
1058.79 | 1058.94
1059.26
1058.66 | 1058.80
1058.95
1058.69 | 1058.49
1058.72
1058.25 | 1057.96
1058.22
1057.78 | 1057.73
1057.77
1057.66 | 1058.17
1058.92
1057.77 | 1059.73
1060.35
1059.00 | 1060.50
1060.76
1060.27 | 1060.52
1060.76
1060.08 | 1060.68
1060.97
1060.38 | 1060.17
1060.60
1059.79 | WTR YR 1982 MEAN 1059.23 MAX 1060.97 MIN 1057.66 #### DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES As the number of streams on which streamflow information is likely to be desired far exceeds the number of stream-gaging stations feasible to operate at one time, the Geological Survey collects limited streamflow data at sites other than stream-gaging stations. When limited streamflow data are collected on a systematic basis over a period of years for use in hydrologic analyses, the site at which the data are collected is called a partial-record station. Data collected at these partial-record stations are usable in low-flow or flood-flow analyses, depending on the type of data collected. In addition, discharge measurements are made at other sites not included in the partial-record program. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites. Records collected at partial-record stations are presented in two tables. The first is a table of annual maximum stage and discharge at high-flow stations and the second is a table of discharge measurements made at miscellaneous sites for both low flow and high flow. HIGH-FLOW PARTIAL-RECORD STATIONS Figure 7.--Location of high-flow partial-record
stations #### High-flow partial-record stations The following table contains annual maximum discharge for high-flow stations. A high-flow partial-record station is equipped with a crest-stage gage, a device which will register the peak stage occurring between inspections of the gage. A stage-discharge relation for each gage is developed from discharge measurements made by indirect measurements of peak flow or by current meter. The date of the maximum discharge is not always certain but is usually determined by comparison with nearby continuous-record stations, weather records, or local inquiry. Only the maximum discharge for each water year is given. Information on some lower floods may have been obtained, and discharge measurements may have been made for purposes of establishing the stage-discharge relation, but these are not published herein. The years given in the period of record represent water years for which the annual maximum has been determined. Annual maximum discharge at high-flow partial-record stations during water year 1982 | | | | | | Ann | ual maxi | num | |----------------|---|--|----------------------------|--|---------|------------------|-----------------------------| | | | | Drainage | Period | | Gage | Dis- | | Station
No. | Station name | Location | area
(mi ²) | of
Record | Date | height
(feet) | charge (ft ³ /s) | | 140. | | | (m1) | necora | | (1660) | (10-/5) | | | | Streams tributary to Lake Su | uperior | | | , | | | 04011370 | Little Devil Track
River near Grand
Marais, MN | Lat 47°47'09", long 90°19'44", in NEt NWt sec.9, T.61 N., R.1 E., Cook County, Hydrologic Unit 04010101, at culvert on County Highway 12, 1.6 miles upstream from mouth, and 2.5 miles north of Grand Marais. | 7.49 | 1961-82 | 4-24-82 | 17.95 | 155 | | 04012500 | Poplar River at
Lutsen, MN | Lat 47°38'23", long 90°42'31", in SW& NE& sec.33, T.60 N., R.3 W., Cook County, Hydrologic Unit 04010101, 350 ft upstream from bridge on U.S. Highway 61 at Lutsen, and 0.3 mile upstream from mouth. | 112 | 1912-17#,
1928-47#,
1952-61#,
1972-82 | 4-26-82 | 5.44 | 1,260 | | 04013200 | Caribou River
near Little
Marais, MN | Lat 47°27'51", long 91°01'50", in NW& SE& sec.36, T.58 N., R.6 W., Lake County, Hydrologic Unit 04010101, at culvert on U.S. Highway 61, 0.2 mile upstream from mouth, and 5.2 miles northeast of Little Marais. | 22.7 | 1961-82 | 4-24-82 | 14.05 | 690 | | 04015200 | Encampment River
tributary at
Silver Creek,
MN | Lat 47°07'01", long 91°36'04", in NE; SE; sec.33. T.54 N., R.10 W., Lake County, Hydrologic Unit 04010102, at culvert on County Highway 3, 0.3 mile north of Silver Creek, and 1.4 miles upstream from mouth. | .96 | 1960-82 | 5- 5-82 | 8.48 | 62 | | 04015250 | Silver Creek
tributary near
Two Harbors, | Lat 47°04'40", long 91°36'49", in SW& NE& sec.16, T.53 N., R.10 W., Lake County, Hydrologic Unit 04010102, at culvert on County Highway 3, 1.0 mile upstream from mouth, and 4.5 miles northeast of Two Harbors. | 3.72 | 1965-82 | 5- 5-82 | 6.27 | 375 | | 04015300 | Little Stewart
River near Two
Harbors, MN | Lat 47°03'52", long 91°40'03", in SEŁ NEŁ sec.24, T.53 N., R.11 W., Lake County, Hydrologic Unit 04010102, at culvert on county highway, 2.0 miles upstream from mouth, and 2.7 miles north of Two Harbors. | 5.54 | 1960-82 | 5- 5-82 | 9.94 | † | | 04015370 | Talmadge River at
Duluth, MN | Lat 46°53'20", long 91°55'21", in SE ¹ 4 NE ¹ 4 sec.2 ¹ 4, T.51 N., R.13 W., St. Louis County, Hydrologic Unit 04010102, at culvert on U.S. Highway 61, 0.6 mile upstream from mouth, and 0.5 mile northeast of Duluth city limits. | 5•79 | 1964-82 | 4-16-82 | 14.16 | 168 | | 04015400 | Miller Creek at
Duluth, MN | Lat 46°49'01", long 92°10'42", in SEt NEt sec.13, T.50 N., R.15 W., St. Louis County, Hydrologic Unit 04010201, at culvert on U.S. Highway 53, 0.2 mile northwest of Duluth city limits. | 4.92 | 1960-82 | 5- 4-82 | 15.18 | 87 | [&]quot;See footnotes at end of the table." Annual maximum discharge at high-flow partial-record stations during water year 1982 | | | | | | Ann | ual maxin | num | |----------|---|---|-------------------|---------------------|---------|----------------|----------------------| | Station | Station name | Location | Drainage
area | Period
of | Date | Gage
height | Dis-
charge | | No. | | | (mi^2) | Record | | (feet) | (ft ³ /s) | | | | Streams tributary to Lake Superio | rContinu | ıed | | | | | 04020480 | North Branch
Whiteface River
near Fairbanks,
MN | Lat 47°22'20", long 91°56'28", at common corner of secs.35, 36, 1, and 2, along line between T.57 N., and T.56 N., R.13 W., St. Louis County, Hydrologic Unit 04010201, on right downstream wingwall of double box culver on County Highway 16, 2 miles upstre from the mouth of Jenkins Creek, and 0.7 mile west of Fairbanks. | -
t | 1979-82 | 4-24-82 | 12.40 | 205 | | 04020700 | Bug Creek at
Shaw, MN | Lat 47°06'40", long 92°21'03", in SWŁ
SEŁ sec.34, T.54 N., R.16 W., St.
Louis County, Hydrologic Unit
04010201, at left bank on downstream
side of culverts on County Road 15
at Shaw, and 7.5 miles upstream from
mouth. | 24.0 | 1979-82 | 7- 4-82 | 14.40 | 350 | | 04021205 | Floodwood River
above Floodwood,
MN | Lat 46°17'15", long 92°53'40", in NEANWA sec.32, T.52 N., R.20 W., St. Louis County, Hydrologic Unit 04010201, at bridge on County Highway 835, 500 ft west of State Highwa, 73, and 2 miles north of Floodwood. | 198
y | 1972-82 | 4-17-82 | (| 2,000 | | 04024095 | Nemadji River
near Holyoke,
MN | Lat 46°31'04", long 92°23'22", in NE&NE& sec.32, T.47 N., R.16 W., Carlton County, Hydrologic Unit 04010301, at bridge on State Highway 23, 3.5 miles north of Holyoke. | 118 | 1972–82 | 4-15-82 | 11.26 | 1,470 | | 04024100 | Rock Creek near
Blackhoof, MN | Lat 45°32'10", long 92°22'12", in SWA SEA sec.21, T.47 N., R.16 W., Carlton County, Hydrologic Unit 04010301, at culvert on State Highway 23, 4.0 miles upstream from mouth, and 4.4 miles east of Blackhoof. | 4.94
n | 1961-65,
1967-82 | 3-31-82 | a16.72 | 330 | | 04024110 | Rock Creek
tributary near
Blackhoof, MN | Lat 46°32'14", long 92°22'05", in NELSEL sec.21, T.47 N., R.16 W., Carlton County, Hydrologic Unit 04010301, at culvert on State Highway 23, 0.1 mile upstream from mouth and 4.5 miles east of Blackhoof. | .20 | 1961-82 | 3-31-82 | a12.84 | t | | 04024200 | South Fork Nemadji
River near
Holyoke, MN | Lat 46°29'38", long 92°24'36", in SELSEL sec.6, T.46 N., R.16 W., Carlton County, Hydrologic Unit 04010301, at culvert on State Highway 23, 1.7 miles downstream from Clear Creek, and 2.0 miles northwest of Holyoke. | 19.4 | 1961-82 | 3-31-82 | all.75 | 440 | | | | Red River of the North ba | sin | | | | | | 05047700 | West Branch
Mustinka River
tributary near
Graceville, MN | Lat 45°36'53", long 96°19'47", in NE&NW& sec.28, T.125 N., R.45 W., Traverse County, Hydrologic Unit 09020102, at culvert on county highway, 6.0 miles northeast of Graceville. | 3.37 | 1964-82 | 7-21-82 | b8.11 | 39 | | 05049200 | Eighteenmile
Creek near
Wheaton, MN | Lat 45°47'18", long 96°31'52", on west quarter of line between secs.24 and 25, T.127 N., R.47 W., Traverse County, Hydrologic Unit 09020102, at culvert on County Highway 67, 1.4 miles upstream from mouth, and 2.0 miles southwest of Wheaton. | 68.5 | 1965-68,
1970-82 | 3-30-82 | a10.70 | 320 | [&]quot;See footnotes at end of the table." Annual maximum discharge at high-flow partial-record stations during water year 1982 | | | | Drainage | Period | Ann | ual maxin
Gage | num
Dis- | |-----------|--|---|-------------------------|----------------------------------|---------|-------------------|--------------------------------| | Station | Station name | Location | area (mi ²) | of
Record | Date | height
(feet) | charge
(ft ³ /s) | | | | Red River of the North basin | Continued | | | | | | 05050700 | Rabbit River near
Nashua, MN | Lat 46°04'30", long 96°18'24", in SEt NEt sec.15, T.130 N., R.45 W., Wilkin County, Hydrologic Unit 09020101 at right downstream piling of bridge on County Road 19, 2.6 miles north on Nashua, 4.8 miles upstream from mouth of South Fork Rabbit River. | f | 1979-82 | 3-30-82 | a13.06 | 325 | | 05060800 | Buffalo River
near Callaway,
MN | Lat 47°01'17", long 95°54'43", in SWł SEł sec.17, T.141 N., R.41 W., Becket County, Hydrologic Unit 09020106, at culvert on U.S. Highway 59, 2.7 miles north of Callaway. | | 1960-82 | 4- 1-82 | a16.86 | t | | 05061200 | Whiskey Creek at
Barnesville, MN | Lat 46°39'35", long 96°23'54", in SEt SWt sec.20, T.137 N., R.45 W., Clay County, Hydrologic Unit 09020106, at culvert on State Highway 34, 0.7 mile upstream from Blue Eagle Lake, and 1.0 mile northeast of Barnesville. | 25•3
e | 1961-64,
1965-66#,
1967-82 | 5-17-82 | b3.67 | 40 | | d05061400 | Spring Creek
above
Downer,
MN | Lat 46°44'37", long 96°25'12", in NWł NWł sec.30, T.138 N., R.45 W., Clay County, Hydrologic Unit 09020106, at culvert on county road, 3.1 miles east of Downer. | 5.81 | 1961-82 | 5-17-82 | e7.14 | t | | 05062280 | Mosquito Creek
near Bagley,
MN | Lat 47°27'02", long 95°22'55", in SWłNWł sec.21, T.146 N., R.37 W., Clearwater County, Hydrologic Unit 09020108, at culvert on State Highway 92, 5.0 miles south of Bagley. | 3.98 | 1961-82 | 4-16-82 | ъ10.64 | 73 | | 05062470 | Marsh creek
tributary near
Mahnomen, MN | Lat 47°19'31", long 96°04'41", in SE&SW& sec.36, T.145 N., R.43 W., Norman County, Hydrologic Unit 09020108, at culvert on State Highway 31, 0.1 mile upstream from mouth, and 5.2 miles west of Mahnomen. | 11.9 | 1961-82 | 4-15-82 | b12.22 | 99 | | 05062700 | Wild Rice River
tributary near
Twin Valley, MN | Lat 47°17'47", long 96°19'42", in SWtSEt sec.12, T.144 N., R.45 W., Norman County, Hydrologic Unit 09020107, at culvert on State Highway 31, 1.2 miles upstream from mouth, and 4.1 miles northwest of Twin Valley. | 4.72 | 1961-82 | 4-15-82 | 11.97 | 76 | | 05062800 | Coon Creek near
Twin Valley, MN | Lat 47°15'51", long 96°20'34", in NE&NE& sec.26, T.144 N., R.45 W., Norman County, Hydrologic Unit 09020108, at bridge on County Highway 28, 1.3 miles upstream from mouth, and 4.0 miles west of Twin Valley. | 50.8 | 1962-82 | 3-31-82 | a11.82 | 410 | | 05063200 | Spring Creek
tributary near
Ogema, MN | Lat 47°07'22", long 95°57'35", in SE4SE4 sec.11, T.142 N., R.42 W., Becker County, Hydrologic Unit 09020108, at culvert on county highway, 2.0 miles northwest of Ogema. | 4.99 | 1963-82 | 3-30-82 | a7.52 | 51 | | 05063500 | South Branch Wild
Rice River near
Borup, MN | Lat 47°11'40", long 96°34'40", in NW&NW& sec.24, T.143 N., R.47 W., Norman County, Hydrologic Unit 09020108, at bridge on County Highway 193, 3.5 miles upstream from Wild Rice River, and 4.0 miles northwest of Borup. | 254 | 1944-49#,
1972-82 | 3-31-82 | a14.34 | t | [&]quot;See footnotes at end of the table." Annual maximum discharge at high-flow partial-record stations during water year 1982 | | | | | | Ann | ual maxir | imum | | |----------------|---|--|--|---|---------|--------------------------|--|--| | Station
No. | Station name | Location | Drainage
area
(mi ²) | Period
of
Record | Date | Gage
height
(feet) | Dis-
charge
(ft ³ /s) | | | | | Red River of the North basin | -Continued | | | | | | | 05073600 | South Branch
Battle River
at Northome, MN | Lat 47°52'17", long 94°17'45", in
NWkNE& sec.25, T.151 N., R.29 W.,
Koochiching County, Hydrologic Unit
09020302, at culvert on U.S. High-
71, 0.7 mile west of Northome, and
3.1 miles upstream from Battle Lake. | 2.80 | 1960-82 | 4-24-82 | 15.29 | 96 | | | 05073750 | Spring Creek near
Blackduck, MN | Lat 47°46'23", long 94°31'22", in NW&NW& sec.32, T.150 N., R.30 W., Beltrami County, Hydrologic Unit 09020302, at culvert on County Highway 304, 3.1 miles north of Blackdud and 3.2 miles upstream from mouth. | | 1960-82 | 4-24-82 | 15.22 | t | | | 05073800 | Perry Creek
tributary near
Shooks, MN | Lat 47°52'00", long 94°32'52", in NW&SW& sec.30, T.151 N., R.30 W., Beltrami County, Hydrologic Unit 09020302, at culvert on State Highway 72, 5.2 miles west of Shooks. | 1.14 | 1960-82 | 4-15-82 | 8.11 | 70 | | | 05075700 | Mud River near
Grygla, MN | Lat 48°19'31", long 95°44'35", at common corner of secs.13, 14, 23, and 24, T.156 N., R.40 W., Hydrologic Unit 09020304, Marshall County, at bridge on State Highway 89, 6 miles west of Grygla. | 170 | 1979-82 | 4-15-82 | 16.90 | 800 | | | 05077700 | Ruffy Brook near
Gonvick, MN | Lat 47°44'50", long 95°24'45", in SE&SE& sec.5, T.149 N., R.37 W., Clearwater County, Hydrologic Unit 09020305, on downstream side of bridge on County Highway 17, 4.0 miles upstream from mouth, and 4.8 miles east of Gonvick. | 45.2 | 1960-78#,
1979-82 | 4-15-82 | 4.59 | 249 | | | 05078180 | Silver Creek near
Clearbrook, MN | Lat 47°38'43", long 95°26'33", in NW4 sec.13, T.148 N., R.38 W., Clearwate County, Hydrologic unit 09020305, at culvert on county highway, 3.4 miles south of Clearbrook. | ; | 1960-82 | 7-21-82 | 8.60 | t | | | 05078400 | Clearwater River
tributary near
Plummer, MN | Lat 47°52'34", long 96°08'35", in SE4SE4 sec.22, T.151 N., R.43 W., Red Lake County, Hydrologic Unit 09020305, at culvert on county highway, 1.2 miles upstream from mouth, and 5.3 miles southwest of Plummer. | 6.51 | 1961-82 | 7-16-82 | 11.80 | t | | | 05086900 | Middle River near
Newfolden, MN | Lat 48°22'04", long 96°16'47", in NE&NE& sec.3, T.156 N., R.44 W., Marshall County, Hydrologic Unit 09020309, at bridge on township road 2.0 miles northeast of Newfolden. | 91.1 | 1979-82 | 4-15-82 | 15.29 | 270 | | | 05094000 | South Branch Two
Rivers at Lake
Bronson, MN | Lat 48°43'50", long 96°39'50", in SW&SW& sec.30, T.161 N., R.46 W., Kittson County, Hydrologic Unit 09020312, 70 ft upstream from culvert on U.S. Highway 59 at town of Lake Bronson, and 3.4 miles downstream from dam at outlet of Bronson Lake. | 444 | 1929-36#,
1937#,
1941-47#,
1954-81#,
1982 | 4- 2-82 | 7.94 | 1,040 | | | | | Lake of the Woods bas: | in | | | | | | | 05129650 | Little Fork River
at Cook, MN | Lat 47°51'15", long 92°41'55", in SE&NE& sec.13, T.62 N., R.19 W., St. Louis County, Hydrologic Unit 09030005, at bridge on U.S. Highway 53, 0.6 mile west of Cook. | 61.5 | 1968–82 | 4-19-82 | 16.00 | 463 | | [&]quot;See footnotes at end of the table." Annual maximum discharge at high-flow partial-record stations during water year 1982 | | | | | | Annual maximum | | | | | |--|---|--|--------------------|--|----------------|--------|----------------------|--|--| | | | | Drainage | Period | | Gage | Dis- | | | | Station | Station name | Location | area | $\circ f$ | Date | height | charge | | | | No. | | | (mi ²) | Record | | (feet) | (ft ³ /s) | | | | | | Lake of the Woods basinCo | ntinued | | | | | | | | | | | | | | | | | | | 05130300 | Boriin Creek near
Chisholm, MN | Lat 47°36'14", long 92°51'58", in SE4SE4 sec.9, T.59 N., R.20 W., St. Louis County, Hydrologic Unit 09030005, at culvert on State Highwa 73, 1.3 miles upstream from mouth, and 7.8 miles north of Chisholm. | 13.7
ay | 1959-82 | 4-18-82 | 12.64 | 260 | | | | 05131750 | Big Fork River
near Bigfork,
MN | Lat 47°44'56", long 93°46'31", in SWANEA sec.27, T.61 N., R.27 W., Itasca County, Hydrologic Unit 09030006, at bridge on State Highway 6, 5.5 miles west of Bigfork. | 602 | 1973-82 | 5-18-82 | 13.39 | 1,810 | | | | 05131878 | Bowerman Brook
near Craigville,
MN | Lat 47°55'29", long 93°45'34", in NEANWA sec.26, T.63 N., R.27 W., Koochiching County, Hydrologic Unit 09030006, on left downstream wingwall of bridge on State Highway 6, 2.4 miles upstream from mouth, and 7.0 miles west of Craigville. | 25.0 | 1979-82 | 4-20-82 | 14.53 | 580 | | | | 05132000 | Big Fork River
at Big Falls,
MN | Lat 48°11'45", long 93°48'25", in SWtSEt sec.35, T.155 N., R.25 W., Koochiching County, Hydrologic Unit 09030006, on left bank at village of Big Falls, 700 ft downstream from falls, 0.3 mile downstream from bric on U.S. Highway 71, and 4.8 miles up stream from Sturgeon River. | lge | 1929-79#,
1980-82 | 4-20-82 | 15.00 | 12,300 | | | | 05140000 | Bulldog Run near
Warroad, MN | Lat 48°51'30", long 95°20'18", in SW\u00e4SE\u00e4 sec.7, T.162 N., R.36 W., Roseau County, Hydrologic Unit 09030009, 10 ft (revised) downstream from culvert on county highway, 0.8 mile upstream from mouth, and 2.5 miles south of Warroad. | 11.1 | 1946-51#,
1966-77#,
1978-82 | 4-14-82 | 6.90 | 265 | | | | 05140500 | East Branch
Warroad River
near Warroad,
MN | Lat 48°51'29", long 95°18'40", in NEŁ NEŁ sec.17, T.162 N., R.36 W., Roses County, Hydrolgoic Unit 09030009, at upstream side of highway bridge, 3.5 miles upstream from mouth, and 2.5 miles south of Warroad. | t | 1946-54#,
19 66- 77#,
1978-82 | 4-17-82 | 8,67 | 546 | | | | t Disch
a Backw
b Affec
c Estim
d Name | ted as a continuous-
arge not determined.
ater from ice.
ted by shifting cont
ated; gage height un
revised.
ater from debris. | crol. | | | | | | | | #### Discharge measurements at miscellaneous sites Measurements of streamflow at points other than gaging stations are given in the following table. The measurements of base flow are designated by an asterisk (*); measurements of peak flow by a dagger (†). Discharge measurements made at miscellaneous sites during water year 1982 | | | | Drainage | Measured
previously | Measu | rements | |---|---------------------------|---
-------------------------|--|--|--| | Stream | Tributary to | Location | area (mi ²) | (water
years) | Date | Discharge
(ft ³ /s) | | | | Red River of the North basin | | | | | | Wild Rice
River | Red River of
the North | Lat 47°17'29", long 96°26'09", on line between sec.13, T.144 N., R.46 W., and sec.18, T.144 N., R.45 W., Norman County, Hydrologic Unit 09020108, at bridge on County Highway 24, 3.2 miles southeast of Ada, MN (05062900). | - | 1945-51,
1965-73,
1975-76,
1978-79 | 3-31-82 | 2,100 | | Snake River | Red River of
the North | Lat 48°11'50", long 96°46'45", in SE4 sec.36, T.155 N., R.48 W., Marshall County, Hydrologic Unit 09020309, at bridge on Minnesota Street in Warren, MN (05085500). | 175 | 1945#,
1946-49,
1953-56#,
1970-72,
1974-76,
1978-79 | 4- 1-82
4-13-82 | | | Roseau River | Red River of
the North | Lat 48°53'28", long 95°43'50", in SW\u00e4SE\u00e4 sec.31, T.163 N., R.39 W., Roseau County, Hydrologic Unit 09020314, at bridge on County Highway 28, 900 feet downstream from Hay Creek, and 3.2 miles northeast of Roseau, MN (05105300). | - | 1973-80 | 11- 2-81
12-14-81
1-25-82
3-22-82
5-25-82
7-12-82
8-31-82 | *25
*6.1
*9.5
270
125 | | | | Lake of the Woods basin | | | | | | Vermilion
River | Crane Lake | Lat 47°57'41", long 92°28'33", in SERSWA sec.2, T.63 N., R.17 W., St. Louis County, Hydrologic Unit 09030002, on left bank 200 ft downstream from dam at outlet of of Vermilion Lake, 4.4 miles upstream from Two Mile Creek, and 14.2 miles northwest of Tower, MN (05129000). | 483 | 1911-17#,
1928-81# | 10-19-81 | 224 | | Gold Portage
outlet from
Kabetogama
Lake | Rainy River | Lat 48°31'56", long 93°05'14", in SW&SW& sec.19, T.70 N., R.21 W., St. Louis County, Hydrologic Unit 09030003, 10 miles northeast of Ray, MN (05129290). | <u>.</u> | 1981 | 11- 3-81
5-10-82
5-13-82
5-25-82
6- 9-82
7-22-82
7-29-82
8-19-82
9-17-82 | 9.1
34
322
397
554
608
547 | [#] Operated as a continuous-record gaging station. 17... 95 27 Water-quality partial-record stations are particular sites where chemical-quality, biolobical and (or) sediment data are collected systematically over a period of years for use in hydrologic analyses. #### 482018092292001 MUKOODA LAKE NEAR CRANE LAKE, MN #### WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | DATE | TIME | SAM-
PLING
DEPTH
(FEET)
(00003) | RESER-
VOIR
DEPTH
(FEET)
(72025) | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS)
(00095) | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(UMHOS)
(90095) | PH
(UNITS)
(00400) | PH
LAB
(UNITS)
(00403) | TEMPER-
ATURE
(DEG C)
(00010) | COLOR
(PLAT-
INUM-
COBALT
UNITS)
(00080) | TRANS-
PAR-
ENCY
(SECCHI
DISK)
(M)
(00078) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | |------------------|---|---|--|--|---|--|---|---|---|--|--| | MAY
20
AUG | 0930 | | 73 | 55 | 61 | 7.6 | 7.6 | 11.0 | <1 | 2.90 | 10.8 | | 17 | 1045 | 14.0 | 73 | 57 | 62 | 8.5 | 7.8 | 21.4 | 12 | 4.5 | 8.1 | | | OXYGEN, | | | | | | | , | | | SOLIDS, | | DATE | DIS-
SOLVED
(PER-
CENT
SATUR- | HARD-
NESS
(MG/L
AS | CALCIUM
DIS-
SOLVED
(MG/L | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L | SODIUM,
DIS-
SOLVED
(MG/L | POTAS-
SIUM,
DIS-
SOLVED
(MG/L | BICAR-
BONATE
IT-FLD
(MG/L
AS | CAR-
BONATE
IT-FLD
(MG/L
AS | SULFATE
DIS-
SOLVED
(MG/L | CHLO-
RIDE,
DIS-
SOLVED
(MG/L | RESIDUÉ
AT 180
DEG. C
DIS-
SOLVED | | DATE | ATION)
(00301) | CACO3)
(00900) | AS CA)
(00915) | AS MG)
(00925) | AS NA)
(00930) | AS K)
(00935) | HCO3)
(99440) | CO3)
(99445) | AS SO4)
(00945) | AS CL)
(00940) | (MG/L)
(70300) | | MAY
20 | 100 | 28 | 6.1 | 3.0 | 1.3 | .7 | 33 | | 2.0 | •3 | 38 | | AUG | 0.5 | | | - 0 | | , | | 1 | | _ | | | DATE | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | SOLIDS,
RESIDUE
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHOS-
PHORUS,
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS,
DIS-
SOLVED
(MG/L
AS P)
(00666) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953) | CHLOR-B
PHYTO-
PLANK-
TON
CHROMO
FLUOROM
(UG/L)
(70954) | |------------------|--|--|--|--|--|---|---|---|---|--| | MAY
20
AUG | •05 | 2 | <.01 | •52 | .016 | <.001 | 6 | <1 | 3.30 | •500 | | 17 | .06 | <1 | <.01 | •50 | .010 | <.001 | 6 | <1 | 1.90 | <.100 | 1.2 .6 26 4.0 2.0 44 •5 6.1 2.8 ## 482018092292001 MUKOODA LAKE NEAR CRANE LAKE, MN--Continued PHYTOPLANKTON ANALYSES, MAY 1982 TO AUGUST 1982 | DATE
TIME | | 20,82
930 | | 17,82
045 | |--|--------------|---------------------------------|--------------|--------------------------| | TOTAL CELLS/ML | 5 | 400 | 3 | 100 | | DIVERSITY: DIVISION .CLASSORDERFAMILYGENUS | | 1.3
1.3
2.5
2.5
2.8 | | 0.7
0.7
1.8
1.8 | | OGANISM | CELLS
/ML | PER-
CENT | CELLS
/ML | PER-
CENT | | BACILLARIOPHYTA (DIATOMS) .BACILLARIOPHYCEAEEUPODISCALESCOSCINODISCACEAECYCLOTELLAMELOSIRA | 870#
330 | 16
6 | <u></u> | _ | | FRAGILARIALES
FRAGILARIACEAE
SYNEDRA | 1500# | 27 | * | 0 | | NAVICULALESGOMPHONEMACEAEGOMPHONEMA | | _ | 87 | 3 | | CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAECHLOROCOCCALESDICTYOSPHAERIACEAE | | | | | | DICTYOSPHAERIUM | 83 | 2 | | - | | OOCYSTACEAEANKISTRODESMUSOOCYSTISSCENEDESMACEAE | 350
 | 6
- | 29
72 | 1 2 | | GLOEOACTINIUM | | - | 160 | 5 | | CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAECHROOCOCCALESCHROOCOCCACEAE | | | | | | ANACYSTISNOSTOCALESNOSTOCACEAE | 1200# | 21 | 160 | 5 | | ANABAENA | | - | 1700# | 54 | | APHANIZOMENONCYLINDROSPERMUM .OSCILLATORIALES | 330
410 | 6
8 | | - | | OSCILLATORIACEAELYNGBYAOSCILLATORIA | 410 | - 8 | 870#
 | 28
- | | EUGLENOPHYTA (EUGLENOIDS) .EUGLENOPHYCEAEEUGLENALESEUGLENACEAE | | | | | | TRACHELOMONAS | * | 0 | 29 | 1 | ## 482226092283301 SANDPOINT LAKE BELOW HARRISON NARROWS NEAR CRANE LAKE, MN | DATE | TIME | SAM-
PLING
DEPTH
(FEET)
(00003) | RESER-
VOIR
DEPTH
(FEET)
(72025) | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS)
(00095) | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(UMHOS)
(90095) | PH
(UNITS)
(00400) | PH
LAB
(UNITS)
(00403) | TEMPER-
ATURE
(DEG C)
(00010) | TRANS-
PAR-
ENCY
(SECCHI
DISK)
(M)
(00078) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | |-----------|---|---|---|--|--|---|--|---|--|--| | MAY
18 | 0940 | | 14 | 44 | 48 | 6.9 | 7.2 | 13.4 | 1.80 | 9.6 | | AUG
17 | 1015 | 8.00 | 12 | 54 | 60 | 7.7 | 7.9 | 22.0 | 2.60 | 7.9 | | | | | | | | | | 1
1 | | | | DATE | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | BICAR-
BONATE
IT-FLD
(MG/L
AS
HCO3)
(99440) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHOS-
PHORUS,
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS,
DIS-
SOLVED
(MG/L
AS P)
(00666) | CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953) | CHLOR-B
PHYTO-
PLANK-
TON
CHROMO
FLUOROM
(UG/L)
(70954) | | MAY 18 | 96 | 16 | 46 | .06 | .07
| .58 | .026 | .006 | 4.40 | <.100 | | AUG | | | | | | | | | | | #### 482226092283301 SANDPOINT LAKE BELOW HARRISON NARROWS NEAR CRANE LAKE, MN--Continued PHYTOPLANKTON ANALYSES, MAY 1982 TO AUGUST 1982 | DATE | | 18,82 | | 17,82 | |---|--------------|---------------------------------|--------------|---------------------------------| | TIME TOTAL CELLS/ML | | 940
990 | | 015
500 | | | | | | | | DIVERSITY: DIVISION .CLASSORDERFAMILYGENUS | | 1.8
1.8
2.6
3.0
3.3 | | 0.9
0.9
1.9
2.0
2.5 | | ORGANISM | CELLS
/ML | PER-
CENT | CELLS
/ML | PER-
CENT | | BACILLARIOPHYTA (DIATOMS) .BACILLARIOPHYCEAE .BACILLARIALESNITZSCHIACEAENITZSCHIACEAE | 70 | 7 | | _ | | EUPODISCALES
COSCINODISCACEAE | | | | | | CYCLOTELLAMELOSIRASTEPHANODISCUS .FRAGILARIALESFRAGILARIACEAE | 42
99
 | 10
- | 28
69 | 1
2 | | ASTERIONELLA | | - | 97 | 3 | | DIATOMASYNEDRATABELLARIA | 56
28
 | 6
3
- |
41 | -
1 | | CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAECHLOROCOCCALESMICRACTINIACEAE | | | | | | MICRACTINIUM
OOCYSTACEAE | 56 | 6 | | - | | ANKISTRODESMUSOOCYSTIS | 56
 | 6
- | *
120 | 0
4 | | SPHAEROCYSTIS | 56 | 6 | 110 | 3 | | SCENEDESMACEAESCENEDESMUSTETRASPORALES | 56 | 6 | 28 | 1 | | GLOEOCYSTACEAEGLOEOCYSTISVOLVOCALES | | - | 41 | 1 | | CHLAMYDOMONADACEAE
CHLAMYDOMONAS | 99 | 10 | * | 0 | | CHRYSOPHYTA .CHRYSOPHYCEAE .OCHROMONADALESSYNURACEAEMALLOMONAS | | _ | | 0 | | CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAE .CHROOCOCCALESCHROOCOCCACEAE | | | | | | AGMENELLUMANACYSTISNOSTOCALES |
310# | 31 | 840#
830# | | | ANABAENA | | - | 1200# | 35 | | EUGLENOPHYTA (EUGLENOIDS) .EUGLENOPHYCEAE .EUGLENALES .EUGLENACEAE .EUGLENA | 14 | 1 | * | 0 | | TRACHELOMONAS PYRRHOPHYTA (FIRE ALGAE) .DINOPHYCEAE .DINOKONTAE | 42 | 4 | | - | | GLENODINIACEAE | | _ | * | 0 | NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15% * - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2% #### 482239092491101 ASH RIVER AT ASH RIVER FALLS NEAR RAY, MN | DATE | TIME | SAM-
PLING
DEPTH
(FEET)
(00003) | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS)
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS)
(00095) | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(UMHOS)
(90095) | PH
(UNITS)
(00400) | PH
LAB
(UNITS)
(00403) | TEMPER-
ATURE
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | BICAR-
BONATE
IT-FLD
(MG/L
AS
HCO3)
(99440) | | |-----------|------|---|--|--|---|--------------------------|---------------------------------|--|--|---|---|--| | AUG
16 | 1300 | 3.30 | 2.9 | 207 | 211 | 8.2 | 7.9 | 23.5 | 7.9 | 96 | 134 | | | DATE | SULFIDE
TOTAL
(MG/L
AS S)
(00745) | SOLIDS,
RESIDUE
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N)
(00610) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N)
(00605) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHOS-
PHORUS,
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS,
DIS-
SOLVED
(MG/L
AS P)
(00666) | CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953) | CHLOR-B
PHYTO-
PLANK-
TON
CHROMO
FLUOROM
(UG/L)
(70954) | |-----------|---|--|--|---|---|--|--|---|---|--| | AUG
16 | < . 5 | 1 | <.01 | .030 | .37 | .40 | .053 | .032 | .900 | <.100 | ## 482308092483301 ASH RIVER ABOVE MOUTH OF CANNON CREEK NEAR RAY, MN | DATE | TIME | SAM-
PLING
DEPTH
(FEET)
(00003) | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS)
(00095) | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(UMHOS)
(90095) | PH
(UNITS)
(00400) | PH
LAB
(UNITS)
(00403) | TEMPER-
ATURE
(DEG C)
(00010) | TRANS-
PAR-
ENCY
(SECCHI
DISK)
(M)
(00078) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301) | |-----------|---|--|--|--|---|---|---|--|---|--| | AUG
16 | 1400 | 2.60 | 209 | 212 | 8.8 | 7.8 | 22.0 | .90 | 10.5 | 125 | | | | | | | | | | | | | | DATE | BICAR-
BONATE
IT-FLD
(MG/L
AS
HCO3)
(99440) | CAR-
BONATE
IT-FLD
(MG/L
AS
CO3)
(99445) | SULFIDE
TOTAL
(MG/L
AS S)
(00745) | SOLIDS,
RESIDUE
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N)
(00610) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N)
(00605) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHOS-PHORUS, TOTAL (MG/L AS P) (00665) | CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953) | CHLOR-B
PHYTO-
PLANK-
TON
CHROMO
FLUOROM
(UG/L)
(70954) | | AUG
16 | 112 | 13 | < . 5 | 2 | .040 | .46 | •50 | .042 | 14.0 | <.100 | ## 482347092494401 ASH RIVER BELOW MOUTH OF CANNON CREEK NEAR RAY, MN | DATE | TIME | SAM-
PLING
DEPTH
(FEET)
(00003) | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(UMHOS)
(90095) | PH
(UNITS)
(00400) | PH
LAB
(UNITS)
(00403) | TEMPER-
ATURE
(DEG C)
(00010) | TRANS-
PAR-
ENCY
(SECCHI
DISK)
(M)
(00078) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | BICAR-
BONATE
IT-FLD
(MG/L
AS
HCO3)
(99440) | CAR-
BONATE
IT-FLD
(MG/L
AS
CO3)
(99445) | |-----------|------|---|---|--------------------------|---------------------------------|--|--|--|---|---|--| | AUG
16 | 1415 | 11.5 | 213 | 8.7 | 8.0 | 20.5 | •90 | 6.5 | 7 5 | 111 | 10 | | DATE | SULFIDE
TOTAL
(MG/L
AS S)
(00745) | SOLIDS,
RESIDUE
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N)
(00610) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N)
(00605) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHOS-
PHORUS,
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS,
DIS-
SOLVED
(MG/L
AS P)
(00666) | CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953) | CHLOR-B
PHYTO-
PLANK-
TON
CHROMO
FLUOROM
(UG/L)
(70954) | |-----------|---|--|--|---|---|---|--|---|---|--| | AUG
16 | < . 5 | 3 | <.01 | .040 | 1.2 | 1.20 | .037 | .002 | 7.80 | <.100 | ## 482451092471001 ASH RIVER AT ENTRANCE TO SULLIVAN BAY NEAR RAY, MN | DATE | TIME | SAM-
PLING
DEPTH
(FEET)
(00003) | RESER-
VOIR
DEPTH
(FEET)
(72025) | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS)
(00095) | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(UMHOS)
(90095) | PH
(UNITS)
(00400) | PH
LAB
(UNITS)
(00403) | TEMPER-
ATURE
(DEG C)
(00010) | |------|------
---|--|--|---|--------------------------|---------------------------------|--| | MAY | | | | | | | | | | 17 | 1730 | | 6 | 150 | 149 | 7.4 | 7.6 | 15.1 | | AUG | | - 0- | _ | | | | | a | | 16 | 1515 | 2.80 | 7 | 158 | 169 | 9.4 | 8.2 | 24.0 | | DATE | TRANS-
PAR-
ENCY
(SECCHI
DISK)
(M)
(00078) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | BICAR-
BONATE
IT-FLD
(MG/L
AS
HCO3)
(99440) | CAR-
BONATE
IT-FLD
(MG/L
AS
CO3)
(99445) | SULFIDE
TOTAL
(MG/L
AS S)
(00745) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | SOLIDS,
RESIDUE
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | |------------------|--|--|---|---|--|---|---|--|--| | MAY
17
AUG | 1.00 | 12.3 | 127 | 86 | | | 115 | .16 | | | 16 | •90 | 11.9 | 146 | 38 | 30 | <.5 | 123 | .17 | 3 | | DATE | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N)
(00610) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N)
(00605) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHOS-
PHORUS,
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS,
DIS-
SOLVED
(MG/L
AS P)
(00666) | CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953) | CHLOR-B
PHYTO-
PLANK-
TON
CHROMO
FLUOROM
(UG/L)
(70954) | |-----------|--|---|---|---|--|---|---|--| | MAY
17 | .13 | | | .63 | .035 | •023 | 2.60 | <.100 | | AUG
16 | <.01 | .010 | .89 | • .90 | .046 | .007 | 9.50 | <.100 | DATE ANALYSIS OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS 482451092471001 ASH RIVER AT ENTRANCE TO SULLIVAN BAY NEAR RAY, MN--Continued PHYTOPLANKTON ANALYSES, MAY 1982 TO AUGUST 1982 MAY 17,82 1730 AUG 16,82 1515 TIME 430000 1500 TOTAL CELLS/ML 0.6 0.1 DIVERSITY: DIVISION 0.1 .CLASS 0.6 ..ORDER 1.7 0.7 ... FAMILYGENUS PER-CELLS PER-CELLS /ML CENT ORGANISM /ML BACILLARIOPHYTA (DIATOMS) .BACILLARIOPHYCEAE .. ACHNANTHALES ...ACHNANTHACEAE 28 2ACHNANTHESCOCCONEIS ..BACILLARIALES ...NITZSCHIACEAENITZSCHIA 1000# 69 .. EUNOTIALES ... EUNOTIACEAEEUNOTIA .. EUPODISCALES ... COSCINODISCACEAE 42 3 0CYCLOTELLAMELOSIRA 56STEPHANODISCUS .. FRAGILARIALES ...FRAGILARIACEAEASTERIONELLADIATOMAFRAGILARIA 130SYNEDRA .. NAVICULALES ... GOMPHONEMACEAEGOMPHONEMA ...NAVICULACEAE 56NAVICULA CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAE .. CHLOROCOCCALES ... CHLOROCOCCACEAESCHROEDERIA ٥TETRAEDRON ...COCCOMYXACEAE ...ELAKATOTHRIX ...DICTYOSPHAERIACEAEDICTYOSPHAERIUM ...OOCYSTACEAEANKISTRODESMUS 14 1ECHINOSPHAERELLAOOCYSTIS × 0SELENASTRUMTREUBARIA ...PALMELLACEAESPHAEROCYSTIS ... SCENEDESMACEAEACTINASTRUM ... CRUCIGENIASCENEDESMUS .. VOLVOCALES ... CHLAMYDOMONADACEAECARTERIA ...CHLAMYDOMONAS 28 2 0 0 ...PANDORINA CHRYSOPHYTA .CHRYSOPHYCEAE ..OCHROMONADALES ...DINOBRYACEAEDINOBRYON CRYPTOPHYTA (CRYPTOMONADS) • CRYPTOPHYCEAE .. CRYPTOMONADALES ... CRYPTOCHRYSIDACEAE CHROOMONAS ... CRYPTOMONADACEAE NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15% * - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2% CRYPTOMONAS •5 .4 2.0 3.0 7.0 42 48 #### 482459092320101 O'LEARY LAKE NEAR CRANE LAKE, MN #### WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | DATE | TIME | SAM-
PLING
DEPTH
(FEET)
(00003) | RESER-
VOIR
DEPTH
(FEET)
(72025) | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS)
(00095) | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(UMHOS)
(90095) | PH
(UNITS)
(00400) | PH
LAB
(UNITS)
(00403) | TEMPER-
ATURE
(DEG C)
(00010) | COLOR
(PLAT-
INUM-
COBALT
UNITS)
(00080) | TRANS-
PAR-
ENCY
(SECCHI
DISK)
(M)
(00078) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | |-----------|---|---|---|---|---|--|---|--|--|--|---| | MAY
20 | 1030 | | 52 | 62 | 68 | 7.4 | 7.4 | 12.7 | 5 | 3.00 | 11.0 | | AUG
17 | 0940 | 8.70 | 36 | 70 | 71 | 9.2 | 7.8 | 21.2 | 16 | 2.80 | 11.8 | | | OVVACEN | | | | | | | | | | got tog | | DATE | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | HARD-
NESS
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | BICAR-
BONATE
IT-FLD
(MG/L
AS
HCO3)
(99440) | CAR-
BONATE
IT-FLD
(MG/L
AS
CO3)
(99445) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | 1.3 1.2 .8 .8 34 21 MAY 20... AUG 17... 106 138 32 31 7.4 7.4 3.3 3.0 | ,
D ATE | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | SOLIDS,
RESIDUE
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHOS-
PHORUS,
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS,
DIS-
SOLVED
(MG/L
AS P)
(00666) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | CHLOR-A
PHYTO-
PLANK-
TON
CHROMO
FLUOROM
(UG/L)
(70953) | CHLOR-B
PHYTO-
PLANK-
TON
CHROMO
FLUOROM
(UG/L)
(70954) | |-------------------|--|--|--|---|--|---|---|---|--|--| | MAY
20 | .06 | 1 | <.01 | .50 | .031 | <.001 | 15 | 1 | 6.50 | <.100 | | AUG
17 | .07 | <1 | <.01 | .30 | -013 | <.001 | 8 | <1 | 4.90 | <.100 | #### 482459092320101 O'LEARY LAKE NEAR CRANE LAKE, MN--Continued ## PHYTOPLANKTON ANALYSES, MAY 1982 TO AUGUST 1982 | DATE
TIME | MAY 20,82
1030 | AUG 17,82 | |---|--------------------------|---------------------------------| | TOTAL CELLS/ML | 140000 | 94000 | | DIVERSITY: DIVISION .CLASSORDERFAMILYGENUS | 0.0
0.0
0.2
0.2 | 0.0
0.0
0.2
0.2
0.7 | | ORGANISM | CELLS PER-
/ML CENT | | | BACILLARIOPHYTA (DIATOMS) .BACILLARIOPHYCEAE .NAVICULALESNAVICULACEAENAVICULA CHLOROPHYTA (GREEN ALGAE) | * 0 | | | .CHLOROPHYCEAE .VOLVOCALESCHLAMYDOMONADACEAECHLAMYDOMONAS .ZYGNEMATALESDESMIDIACEAESPONDYLOSIUM | | * 0 | | CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAE .CHROOCOCCACEAECHROOCOCCACEAEANACYSTISGOMPHOSPHAERIA .NOSTOCALESNOSTOCACEAE | 140000# 98 |
1700 2 | | ANABAENAAPHANIZOMENON .OSCILLATORIALESOSCILLATORIACEAE | 2600 2 | 8300 9
83000# 88 | | EUGLENOPHYTA (EUGLENOIDS) EUGLENOPHYCEAE EUGLENALES EUGLENACEAE TRACHELOMONAS | * 0 | 920 1 | ## 482545092495401 KABETOGAMA LAKE AT SULLIVAN BAY OUTLET NEAR RAY, MN | DATE | TIME | SAM-
PLING
DEPTH
(FEET)
(00003) | RESER-
VOIR
DEPTH
(FEET)
(72025)
 SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS)
(00095) | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(UMHOS)
(90095) | PH
(UNITS)
(00400) | PH
LAB
(UNITS)
(00403) | TEMPER-
ATURE
(DEG C)
(00010) | TRANS-
PAR-
ENCY
(SECCHI
DISK)
(M)
(00078) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | | |-----------|------|---|--|--|---|--------------------------|---------------------------------|--|--|--|---|--| | MAY
17 | 1710 | | 18 | 140 | 139 | 7.5 | 7.6 | 15.3 | 1.10 | 8.7 | 90 | | | AUG
18 | 1145 | 3.00 | 16 | 132 | 110 | 9.7 | 8.6 | 22.0 | .90 | 10.4 | 123 | | | DATE | BICAR-
BONATE
IT-FLD
(MG/L
AS
HCO3)
(99440) | CAR-
BONATE
IT-FLD
(MG/L
AS
CO3)
(99445) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHOS-
PHORUS,
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS,
DIS-
SOLVED
(MG/L
AS P)
(00666) | CHLOR-A
PHYTO-
PLANK-
TON
CHROMO
FLUOROM
(UG/L)
(70953) | CHLOR-B
PHYTO-
PLANK-
TON
CHROMO
FLUOROM
(UG/L)
(70954) | |------------------|---|--|---|--|--|--|--|---|--|--| | MAY
17
AUG | 80 | | 103 | .14 | .06 | .72 | .033 | .007 | 6.30 | <.100 | | 18 | 42 | 13 | 82 | .11 | <.01 | .80 | .048 | .003 | 5.20 | <.100 | # 482545092495401 KABETOGAMA LAKE AT SULLIVAN BAY OUTLET NEAR RAY, MN--Continued #### PHYTOPLANKTON ANALYSES, MAY 1982 TO AUGUST 1982 | DATE
TIME | | 17,82
1710 | AUG | 18,82
.145 | |--|--------------|---------------------------------|-----------------|--------------------------| | TOTAL CELLS/ML | | 2200 | | 0000 | | DIVERSITY: DIVISION .CLASS .ORDERFAMILYGENUS | | 1.4
1.4
2.5
3.0
3.4 | - 1 | 0.2
0.2
1.5
1.5 | | ORGANISM | CELLS
/ML | PER-
CENT | CELLS
/ML | PER-
CENT | | BACILLARIOPHYTA (DIATOMS) .BACILLARIOPHYCEAEBACILLARIALESNITZSCHIACEAENITZSCHIAEUPODISCALES | 390# | 18 | | - | | COSCINODISCACEAECYCLOTELLAMELOSIRAFRAGILARIALES | 130
520# | 6
23 | 3400 | 0
2 | | FRAGILARIACEAE
MERIDION
SYNEDRA | 14
70 | 1 3 | | -
0 | | NAYICULALESCYMBELLACEAECYMBELLAGOMPHONEMACEAE | 14 | 1 | | - | | GOMPHONEMA
NAVICULACEAE | 42 | 2 | | - | | NAVICULA CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAE .CHLOROCOCCALESCHLOROCOCCACEAESCHROEDERIA | 56 | 3 | * | 0 | | TETRAEDRONDICTYOSPHAERIACEAEDICTYOSPHAERIUM |
380# | -
17 | * | ŏ
- | | OOCYSTACEAE
ANKISTRODESMUS
KIRCHNERIELLA | 56
28 | 3
1 | | - | | SCENEDESMACEAECRUCIGENIASCENEDESMUSVOLVOCALES | 56
200 | 3
9 | * | <u></u> | | CHLAMYDOMONADACEAECHLAMYDOMONAS CHRYSOPHYTA | 98 | 4 | * | 0 | | .CHRYSOPHYCEAE
OCHROMONADALES
OCHROMONADACEAE | 56 | 2 | | | | OCHROMONAS
SYNURACEAE
MALLOMONAS | 56
42 | 3
2 | * | 0 | | CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAECHROOCOCCALESCHROOCOCCACEAE | | | | | | ANACYSTISGOMPHOSPHAERIA .NOSTOCALES .NOSTOCACEAE | 84
 | - | 9600 | - 6 | | ANABAENA
APHANIZOMENON
OSCILLATORIALES | | _ | 21000
57000# | 13
34 | | OSCILLATORIACEAE
OSCILLATORIA | | - | 73000# | 44 | | EUGLENOPHYTA (EUGLENOIDS) .EUGLENOPHYCEAEEUGLENALESEUGLENACEAE | | | | | | TRACHELOMONAS | | - | * | 0 | NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15% # - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2% ## 482607092511701 KABETOGAMA LAKE AT MOUTH OF MEADWOOD BAY NEAR RAY, MN | DATE | TIME | SAM-
PLING
DEPTH
(FEET)
(00003) | RESER-
VOIR
DEPTH
(FEET)
(72025) | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS)
(00095) | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(UMHOS)
(90095) | PH
(UNITS)
(00400) | PH
LAB
(UNITS)
(00403) | TEMPER-
ATURE
(DEG C)
(00010) | TRANS-
PAR-
ENCY
(SECCHI
DISK)
(M)
(00078) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | |------------------|------|---|--|--|---|--------------------------|---------------------------------|--|--|--|---| | MAY
17
AUG | 1640 | | 37 | 94 | 98 | 7.3 | 7.5 | 11.0 | 1.60 | 10.2 | 96 | | 18 | 1115 | 3.60 | 39 | 74 | 63 | 9.6 | 8.2 | 22.3 | 1.10 | 11.2 | 133 | | DATE | BICAR-
BONATE
IT-FLD
(MG/L
AS
HCO3)
(99440) | CAR-
BONATE
IT-FLD
(MG/L
AS
CO3)
(99445) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHOS-
PHORUS,
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS,
DIS-
SOLVED
(MG/L
AS P)
(00666) | CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953) | CHLOR-B
PHYTO-
PLANK-
TON
CHROMO
FLUOROM
(UG/L)
(70954) | |------------------------|---|--|---|--|--|--|--|---|---|--| | MAY
17
AUG
18 | 54
19 |
10 | 68
54 | .09
.07 | •15
 | •73
•60 | .029 | •005
 | 5.60
9.50 | <.100
<.100 | #### 482607092511701 KABETOGAMA LAKE AT MOUTH OF MEADWOOD BAY NEAR RAY, MN--Continued ## PHYTOPLANKTON ANALYSES, MAY 1982 TO AUGUST 1982 | DATE
TIME | MA | 7 17,82
1640 | 2 AUG | 18,82
1115 | |--|-------------------|--------------------------|-------------------|---------------------------------| | TOTAL CELLS/ML | | 3900 | 23 | 80000 | | DIVERSITY: DIVISION .CLASS .ORDERFAMILYGENUS | | 0.4
0.4
1.3
1.3 | ,
,
, | 0.0
0.0
0.7
0.7
1.4 | | ORGANISM | CELLS
/ML | PER-
CENT | CELLS
/ML | PER-
CENT | | BACILLARIOPHYTA (DIATOMS) .BACILLARIOPHYCEAEBACILLARIALESNITZSCHIACEAENITZSCHIADUPODISCALES | 140 | 4 | | - | | COSCINODISCACEAECYCLOTELLASTEPHANODISCUS .FRAGILARIALES | 2700#
 | 70
- |
* | ō | | FRAGILARIACEAEDIATOMAFRAGILARIASYNEDRA | 390
200
220 | 10
5
6 |
 | - | | CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAE .CHLOROCOCCALES .OOCYSTACEAEANKISTRODESMUS .VOLVOCALESCHLAMYDOMONADACEAECHLAMYDOMONAS | 28
84 | 1 2 |
* | - 0 | | CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAECHROOCOCCALESCHROOCOCCACEAEANACYSTIS .NOSTOCALES | 56 | 1 | 41000# | 18 | | NOSTOCACEAEANABAENAAPHANIZOMENON .OSCILLATORIALES | | - | 130000#
54000# | 58
24 | | OSCILLATORIACEAE
OSCILLATORIA | | - | * | 0 | | PYRRHOPHYTA (FIRE ALGAE) .DINOPHYCEAEDINOKONTAEPERIDINIACEAEPERIDINIUM | 28 | 1 | | - | #### 482616092372201 NAMAKAN LAKE NEAR RAY, MN | DATE | TIME | SAM-
PLING
DEPTH
(FEET)
(00003) | RESER-
VOIR
DEPTH
(FEET)
(72025) | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS)
(00095) | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(UMHOS)
(90095) | PH
(UNITS)
(00400) | PH
LAB
(UNITS)
(00403) | TEMPER-
ATURE
(DEG C)
(00010) | TRANS-
PAR-
ENCY
(SECCHI
DISK)
(M)
(00078) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | |------------------|---|---|---
--|--|---|--|---|--|--| | MAY
17 | 1230 | | 67 | 46 | 52 | 6.9 | 7.3 | 8.0 | 2.70 | | | AUG
18 | 1230 | 8.20 | 80 | 41 | 45 | 7.6 | 7.8 | 21.5 | 2.50 | 7.8 | | | OWATN | | | | | | | | | | | DATE | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | BICAR-
BONATE
IT-FLD
(MG/L
AS
HCO3)
(99440) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHOS-
PHORUS,
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS,
DIS-
SOLVED
(MG/L
AS P)
(00666) | CHLOR-A
PHYTO-
PLANK-
TON
CHROMO
FLUOROM
(UG/L)
(70953) | CHLOR-B
PHYTO-
PLANK-
TON
CHROMO
FLUOROM
(UG/L)
(70954) | | MAY
17
AUG | | 18 | 41 | .06 | .12 | .61 | .018 | .007 | 5.60 | <.100 | | 18 | 91 | 16 | 38 | •05 | •07 | <.10 | .012 | .001 | 1.00 | <.100 | #### 482616092372201 NAMAKAN LAKE NEAR RAY, MN--Continued # PHYTOPLANKTON ANALYSES, MAY 1982 TO AUGUST 1982 | DATE
TIME | MAY 17,82
1230 | AUG 18,82
1230 | |---|--------------------------|---------------------------------| | TOTAL CELLS/ML | 1500 | 1500 | | DIVERSITY: DIVISION .CLASS .ORDERFAMILYGENUS | 0.8
0.8
1.4
1.5 | 1.2
1.2
1.2
1.3
1.6 | | ORGANISM | CELLS PER-
/ML CENT | CELLS PER-
/ML CENT | | BACILLARIOPHYTA (DIATOMS) .BACILLARIOPHYCEAE .ACHNANTHALES .ACHNANTHACEAEACHNANTHES | 14 1 | | | COSCINODISCACEAE | | | | CYCLOTELLA
FRAGILARIALES
FRAGILARIACEAE | 140 10 | | | DIATOMA
FRAGILARIA | 1000# 69 | 1000# 66 | | HANNAEA
SYNEDRA
NAVICULALES | 14 1
29 2 | ~ | | CYMBELLACEAE
CYMBELLA
NAVICULACEAE | 14 1 | | | NAVICULA | 14 1 | ~ | | CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAECHLOROCOCCALESCHLOROCOCCACEAE | | | | SCHROEDERIA
DICTYOSPHAERIACEAE | 14 1 | 29 2 | | OICTYOS PHAERIUM
OOCYSTACEAE | 58 4 | | | OOCYSTIS CHRYSOPHYTA | - | 58 4 | | .CHRYSOPHYCEAEOCHROMONADALESSYNURACEAE | 1 1 | | | MALLOMONAS CYANOPHYTA (BLUE-GREEN ALGAE) | | 29 2 | | .CYANOPHYCEAECHROOCOCCALESCHROOCOCCACEAEAGMENELLUMANACYSTIS |
 | 230# 15
170 11 | | EUGLENOPHYTA (EUGLENOIDS) .EUGLENOPHYCEAEEUGLENALES | | 21. | | EUGLENACEAE
TRACHELOMONAS | 14 1 | | | PYRRHOPHYTA (FIRE ALGAE) .DINOPHYCEAE .DINOKONTAE | | | | PERIDINIACEAE
PERIDINIUM | 130 9 | | ## 482709092264601 NAMAKAN LAKE AT MOUTH OF NAMAKAN RIVER, ONTARIO | DATE | TIME | SAM-
PLING
DEPTH
(FEET)
(00003) | RESER-
VOIR
DEPTH
(FEET)
(72025) | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS)
(00095) | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(UMHOS)
(90095) | PH
(UNITS)
(00400) | PH
LAB
(UNITS)
(00403) | TEMPER-
ATURE
(DEG C)
(00010) | TRANS-
PAR-
ENCY
(SECCHI
DISK)
(M)
(00078) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | |------------------|------|---|--|--|---|--------------------------|---------------------------------|--|--|--| | MAY
18
AUG | 1040 | | 16 | 35 | 41 | 7.0 | 7.4 | 11.2 | 2.40 | 11.1 | | 17 | 1100 | 9.40 | 27 | 43 | 43 | 7.6 | 7.8 | 22.0 | 3.00 | 8.8 | | DATE | OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) | BICAR-BONATE IT-FLD (MG/L AS HCO3) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | PHOS-
PHORUS,
TOTAL
(MG/L
AS P) | PHOS-
PHORUS,
DIS-
SOLVED
(MG/L
AS P) | CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) | CHLOR-B
PHYTO-
PLANK-
TON
CHROMO
FLUOROM
(UG/L) | |-----------|--|------------------------------------|--|---|---|---|---|--|---|---| | MAY | (00301) | (99440) | (70300) | (70303) | (00631) | (00625) | (00665) | (00666) | (70953) | (70954) | | 18
AUG | 106 | 15 | 36 | •05 | •05 | • 47 | .018 | .017 | 4.40 | <.100 | | 17 | 104 | 14 | 50 | .07 | .13 | <.10 | .012 | .003 | 1.10 | <.100 | 482709092264601 NAMAKAN LAKE AT MOUTH OF NAMAKAN RIVER, ONTARIO--Continued PHYTOPLANKTON ANALYSES, MAY 1982 TO AUGUST 1982 | DATE
TIME | MAY 18,82
1040 | AUG 17,82
1100 | |---|---------------------------------|--------------------------| | TOTAL CELLS/ML | 1100 | 240 | | DIVERSITY: DIVISION .CLASS .ORDERFAMILYGENUS | 0.7
0.7
1.6
1.6
2.2 | 1.0
1.0
1.2
2.1 | | ORGANISM | CELLS PER-
/ML CENT | CELLS PER- | | BACILLARIOPHYTA (DIATOMS) .BACILLARIOPHYCEAE .EUPODISCALESCOSCINODISCACEAECYCLOTELLAMELOSIRASTEPHANODISCUS .FRAGILARIALES | 220# 20

 | 72# 29
14 6 | | FRAGILARIACEAEASTERIONELLAFRAGILARIASYNEDRATABELLARIA .NAVICULALES .NAVICULACEAE | 130 12
530# 50
43 4
 |

14 6 | | CHLOROPHYTA (GREEN ALGAE) CHLOROPHYCEAE CHLOROCOCCALES CHLOROCOCCACEAE | 14 1 | | | SCHROEDERIADICTYOSPHAERIACEAEDICTYOSPHAERIUM | | 29 12
58# 24 | | OOCYSTACEAEANKISTRODESMUSOOCYSTIS .VOLVOCALESCHLAMYDOMONADACEAE | 43 4 |
58# 24 | | CHLAMYDOMONAS | 29 3 | | | EUGLENOPHYTA (EUGLENOIDS) .EUGLENOPHYCEAEEUGLENALESEUGLENACEAEEUGLENA | 29 3 | · - | | PYRRHOPHYTA (FIRE ALGAE) .DINOPHYCEAEDINOKONTAEPERIDINIACEAEPERIDINIUM | 29 3 | 1 | ## 482721093003901 KABETOGAMA LAKE NEAR RAY, MN | DATE | TIME | SAM-
PLING
DEPTH
(FEET)
(00003) | RESER-
VOIR
DEPTH
(FEET)
(72025) | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS)
(00095) | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(UMHOS)
(90095) | PH
(UNITS)
(00400) | PH
LAB
(UNITS)
(00403) | TEMPER-
ATURE
(DEG C)
(00010) | TRANS-
PAR-
ENCY
(SECCHI
DISK)
(M)
(00078) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | |------------------|------|---|--|--|---|--------------------------|---------------------------------|--|--|--|---| | MAY
17
AUG | 1515 | स्त्रमं स्त्रमं | 34 | 85 | 90 | 7.5 | 7.7 | 10.3 | 2.00 | 12.0 | 110 | | 18 | 0915 | 3.00 | 32 | 89 | 79 | 9.6 | 8.4 | 21.6 | •90 | 11.0 | 131 | | DATE | BICAR-
BONATE
IT-FLD
(MG/L
AS
HCO3)
(99440) | CAR-
BONATE
IT-FLD
(MG/L
AS
CO3)
(99445) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHOS-PHORUS,
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS,
DIS-
SOLVED
(MG/L
AS P)
(00666) | CHLOR-A
PHYTO-
PLANK-
TON
CHROMO
FLUOROM
(UG/L)
(70953) | CHLOR-B
PHYTO-
PLANK-
TON
CHROMO
FLUOROM
(UG/L)
(70954) | |------------------------|---|--|---|--|--|---|--|---|--|--| | MAY
17
AUG
18 | 48
19 |
15 | 62
62 | .08 | .03
<.01 | .87
.80 | .045 | .008 | 13.0
42.0 | <.100
<.100 | 482721093003901 KABETOGAMA LAKE NEAR RAY, MN--Continued ## PHYTOPLANKTON ANALYSES, MAY 1982 TO AUGUST 1982 | DATE
TIME | MAY
1 | 17,82
515 | AUG 1 | 18,82
915 |
--|--------------|--------------------------|------------------|-------------------| | TOTAL CELLS/ML | 7 | 800 | 2700 | 000 | | DIVERSITY: DIVISION .CLASS .ORDERFAMILYGENUS | | 0.3
0.3
0.9
0.9 | (| 0.0
0.8
0.8 | | ORGANISM | CELLS
/ML | PER-
CENT | CELLS
/ML | PER-
CENT | | BACILLARIOPHYTA (DIATOMS) .BACILLARIOPHYCEAE .ACHNANTHALES .ACHNANTHACEAE .ACHNANTHES | 72 | 1 | -+ ' | _ | | EUPODISCALESCOSCINODISCACEAE | | | 1: | | | CYCLOTELLA | 6100#
650 | 79
8 | -+ | - | | MELOSIRA
FRAGILARIALES | 050 | O | | _ | | FRAGILARIACEAESYNEDRANAVICULALES | 430 | 6 | | - | | NAVICULACEAENAVICULA | 220 | 3 | | _ | | CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAE .VOLVOCALESCHLAMYDOMONADACEAECHLAMYDOMONAS | 72 | 1 | | _ | | CHRYSOPHYTA .CHRYSOPHYCEAE .OCHROMONADALESDINOBRYACEAEDINOBRYON CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAE | 72 | 1 | | - | | CHROOCOCCALESCHROOCOCCACEAEANACYSTIS | | _ | 60000# | 22 | | . NOSTOCALES . NOSTOCACEAE ANABAENA APHANIZOMENON | | <u>-</u> | 28000
180000# | 10
68 | | EUGLENOPHYTA (EUGLENOIDS) .EUGLENOPHYCEAE .EUGLENALESEUGLENACEAETRACHELOMONAS | 72 | 1 | - | _ | | PYRRHOPHYTA (FIRE ALGAE) .DINOPHYCEAEDINOKONTAEPERIDINIACEAE | | | 1 | | | PERIDINIAGEAE | 72 | 1 | | - | ## 482747092503001 KABETOGAMA LAKE IN LOST BAY NEAR RAY, MN | DATE | TIME | SAM-
PLING
DEPTH
(FEET)
(00003) | RESER-
VOIR
DEPTH
(FEET)
(72025) | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS)
(00095) | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(UMHOS)
(90095) | PH
(UNITS)
(00400) | PH
LAB
(UNITS)
(00403) | TEMPER-
ATURE
(DEG C)
(00010) | TRANS-
PAR-
ENCY
(SECCHI
DISK)
(M)
(00078) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | |-----------|------|---|--|--|---|--------------------------|---------------------------------|--|--|--|---| | MAY 17 | 1600 | | 35 | 78 | 85 | 7.2 | 7.6 | 10.5 | 2.10 | | | | AUG
18 | 1030 | 3.00 | 37 | 89 | 75 | 9.9 | 8.9 | 23.3 | 1.00 | 12.0 | 145 | | DATE | BICAR-
BONATE
IT-FLD
(MG/L
AS
HCO3)
(99440) | CAR-
BONATE
IT-FLD
(MG/L
AS
CO3)
(99445) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHOS-
PHORUS,
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS,
DIS-
SOLVED
(MG/L
AS P)
(00666) | CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953) | CHLOR-B
PHYTO-
PLANK-
TON
CHROMO
FLUOROM
(UG/L)
(70954) | |------------------|---|--|---|--|--|---|--|---|---|--| | MAY
17
AUG | 42 | | 57 | .08 | .04 | •53 | .029 | .023 | 8.70 | <.100 | | 18 | 25 | 11 | 61 | .08 | <.01 | •90 | .037 | .004 | 17.0 | <.100 | 482747092503001 KABETOGAMA LAKE IN LOST BAY NEAR RAY, MN--Continued PHYTOPLANKTON ANALYSES, MAY 1982 TO AUGUST 1982 | DATE
TIME | | 17,82
500 | AUG 1 | 18,82
030 | |--|--------------|--------------------------|------------------|--------------------------| | TOTAL CELLS/ML | 5 | 200 | 1300 | 000 | | DIVERSITY: DIVISION .CLASS .ORDERFAMILYGENUS | | 0.7
0.7
1.5
1.6 | (
(
, ' (| 0.0
0.0
0.9
0.9 | | ORGANISM | CELLS
/ML | PER-
CENT | CELLS
/ML | PER-
CENT | | BACILLARIOPHYTA (DIATOMS) BACILLARIOPHYCEAEBACILLARIALESNITZSCHIACEAENITZSCHIA | 96 | 2 | | _ | | EUPODISCALES
COSCINODISCACEAE | | | | | | CYCLOTELLA | 3400# | 66
6 | | - | | MELOSIRASTEPHANODISCUSFRAGILARIALESFRAGILARIACEAE | 340
 | - | * | 0 | | SYNEDRA
NAVICULALES | 380 | 7 | | - | | GOMPHONEMACEAEGOMPHONEMA | 48 | 1 | | - | | NAVICULACEAE
NAVICULA
SURIRELLALES | 240 | 5 | | - | | SURIRELLACEAE
CYMATOPLEURA | 48 | 1 | | - | | CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAECHLOROCOCCALESCHLOROCOCCACEAE | | | | | | SCHROEDERIA | 290 | 6 | | | | OOCYSTACEAE
ANKISTRODESMUS | 96 | 2 | | - | | CHRYSOPHYTA .CHRYSOPHYCEAE .OCHROMONADALESDINOBRYACEAE | | | | | | DINOBRYON | 48 | 1 | | - | | SYNURACEAE
MALLOMONAS | | _ | * | 0 | | CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAECHROOCOCCALESCHROOCOCCACEAE | | | 1 | | | GOMPHOSPHAERIA
.NOSTOCALES
NOSTOCACEAE | | - | 35000# | 27 | | ANABAENA
APHANIZOMENON | 190 | 4 - | 64000#
31000# | 49
24 | ## 482951092531601 SHOEPACK LAKE NEAR INTERNATIONAL FALLS, MN | DATE | TIME | SAM-
PLING
DEPTH
(FEET)
(00003) | RESER-
VOIR
DEPTH
(FEET)
(72025) | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS)
(00095) | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(UMHOS)
(90095) | PH
(UNITS)
(00400) | PH
LAB
(UNITS)
(00403) | TEMPER-
ATURE
(DEG C)
(00010) | COLOR
(PLAT-
INUM-
COBALT
UNITS)
(00080) | TRANS-
PAR-
ENCY
(SECCHI
DISK)
(M)
(00078) | OXYGEN, DIS- SOLVED (MG/L) (00300) | |-----------|------|---|--|--|---|--------------------------|---------------------------------|--|---|--|------------------------------------| | MAY
19 | 1500 | | 22 | 22 | 28 | 6.0 | 6.5 | 14.5 | 70 | 1.70 | 9.1 | | AUG
17 | 1430 | 4.70 | 21 | 20 | 28 | 6.6 | 6.9 | 22.2 | 80 | 1.50 | 9.9 | | DATE | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | HARD-
NESS
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | BICAR-
BONATE
IT-FLD
(MG/L
AS
HCO3)
(99440) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | |------------------|---|---|---|---|---|--|---|--|--|---| | MAY
19
AUG | 93 | 10 | 2.3 | 1.1 | 1.1 | •7 | 6.0 | 4.0 | 1.1 | 48 | | 17 | 119 | 10 | 2.3 | 1.0 | 1.0 | . 4 | 5.0 | 4.0 | 1.0 | 46 | | DATE | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | SOLIDS,
RESIDUE
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHOS-
PHORUS,
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS,
DIS-
SOLVED
(MG/L
AS P)
(00666) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953) | CHLOR-B
PHYTO-
PLANK-
TON
CHROMO
FLUOROM
(UG/L)
(70954) | |------------------|--|--|--|---|--|---|---|---|---|--| | MAY
19
AUG | .07 | 2 | .14 | .69 | .021 | .011 | 230 | 40 | 4.70 | .700 | | 17 | .06 | 2 | .02 | .70 | .014 | .001 | 410 | 24 | 2.20 | <.100 | 482951092531601
SHOEPACK LAKE NEAR INTERNATIONAL FALLS, MN--Continued PHYTOPLANKTON ANALYSES, MAY 1982 TO AUGUST 1982 | DATE
TIME | | 19,82
500 | | 17,82
430 | |--|------------------|--------------------------|------------------------|---------------------------------| | TOTAL CELLS/ML | 16 | 000 | 5 | 600 | | DIVERSITY: DIVISION .CLASS .ORDERFAMILYGENUS | | 0.3
0.3
0.3
0.3 | 1 | 1.2
1.2
1.2
1.7
2.5 | | ORGANISM | CELLS
/ML | PER-
CENT | CELLS
/ML | PER-
CENT | | BACILLARIOPHYTA (DIATOMS) .BACILLARIOPHYCEAEEUNOTIALESEUNOTIACEAEEUNOTIA | * | 0 | | <u></u> | | EUPODISCALESCOSCINODISCACEAECYCLOTELLAFRAGILARIALES | * | 0 | 58 | 1 | | FRAGILARIACEAEASTERIONELLASYNEDRATABELLARIA |
*
 | 0 | 58

58 | 1
-
1 | | CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAECHLOROCOCCALESCHLOROCOCCACEAE | | | | | | TETRAEDRON
OOCYSTACEAE | * | 0 | | - | | ANKISTRODESMUSKIRCHMERIELLAQUADRIGULASELENASTRUM | 82

 | 1 - | 72
680
58
230 | 1
12
1
4 | | PALMELLACEAESPHAEROCYSTIS | | _ | 660 | 12 | | SCENEDESMACEAE
CRUCIGENIA | | - | 170 | 3 | | . VOLVOCALESCHLAMYDOMONADACEAECHLAMYDOMONASZYGNEMATALES | 250 | 2 | | _ | | DESMIDIACEAECOSMARIUMSTAURASTRUM | | - | 29
29 | 1
1 | | CHRYSOPHYTA .XANTHOPHYCEAEMISCHOCOCCALES | | | 1 | | | SCIADACEAECENTRITRACTUS CRYPTOPHYTA (CRYPTOMONADS) | * | 0 | | | | .CRYPTOPHYCEAE
CRYPTOMONADALES
CRYPTOCHRYSIDACEAE | * | 0 | | | | CHROOMONASCRYPTOMONADACEAECRYPTOMONAS | * | 0 | | _ | | CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAECHROOCOCCALES | | | | | | CHROOCOCCACEAEAGMENELLUMANACYSTISGOMPHOSPHAERIA | 82
15000#
 | 1
96
- | 230
330
2900# | 4
6
52 | | EUGLENOPHYTA (EUGLENOIDS) .EUGLENOPHYCEAE .EUGLENALESEUGLENACEAE | | | | | | TRACHELOMONAS | | | 29 | 1 | ## 482958092484501 CRUISER LAKE NEAR INTERNATIONAL FALLS, MN # WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | DATE | TIME | SAM-
PLING
DEPTH
(FEET)
(00003) | RESER-
VOIR
DEPTH
(FEET)
(72025) | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS)
(00095) | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(UMHOS)
(90095) | PH
(UNITS)
(00400) | PH
LAB
(UNITS)
(00403) | TEMPER-
ATURE
(DEG C)
(00010) | COLOR
(PLAT-
INUM-
COBALT
UNITS)
(00080) | TRANS-
PAR-
ENCY
(SECCHI
DISK)
(M)
(00078) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | |-----------|------|---|--|--|---|--------------------------|---------------------------------|--|---|--|--| | MAY
19 | 1350 | | 89 | 19 | 24 | 6.3 | 7.0 | 10.8 | <1 | 5.0 | 10.8 | | AUG
17 | 1315 | 25.0 | 90 | 18 | 31 | 6.8 | 7.2 | 15.2 | 9 | 8.0 | 12.1 | | DATE | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | HARD-
NESS
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | BICAR-
BONATE
IT-FLD
(MG/L
AS
HCO3)
(99440) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | |------------------|---|---|---|---|---|--|---|--|--|---| | MAY
19
AUG | 103 | 9 | 2.2 | .8 | .8 | •5 | 8.0 | 2.0 | .2 | 17 | | 17 | 125 | 8 | 2.1 | •7 | • 7 | •3 | 8.0 | 3.0 | .6 | 16 | | DATE | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | SOLIDS,
RESIDUE
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHOS-
PHORUS,
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS,
DIS-
SOLVED
(MG/L
AS P)
(00666) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953) | CHLOR-B
PHYTO-
PLANK-
TON
CHROMO
FLUOROM
(UG/L)
(70954) | |------------------------|--|--|--|---|--|---|---|---|---|--| | MAY
19
AUG
17 | .02 | 2
<1 | .01
<.01 | •34
•50 | .008
.008 | <.001
.002 | 10
3 | 2 | 2.30
<.100 | <.100
<.100 | الو ANALYSIS OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS 482958092484501 CRUISER LAKE NEAR INTERNATIONAL FALLS, MN--Continued PHYTOPLANKTON ANALYSES, MAY 1982 TO AUGUST 1982 | DATE
TIME | | 19,82
350 | | 17,82
315 | |---|--------------|--------------------------|--------------|--------------------------| | TOTAL CELLS/ML | 5 | 700 | 2 | 300 | | DIVERSITY: DIVISION .CLASS .ORDERFAMILYGENUS | 1 | 0.6
0.6
0.8
0.8 | | 0.6
0.6
1.3
1.3 | | ORGANISM | CELLS
/ML | PER-
CENT | CELLS
/ML | PER-
CENT | | BACILLARIOPHYTA (DIATOMS) .BACILLARIOPHYCEAE .EUPODISCALESCOSCINODISCACEAECYCLOTELLA | 150 | 3 | 14 | 1 | | FRAGILARIALES
FRAGILARIACEAE | | | | | | ASTERIONELLA | 140 | 2 | 120 | 5 | | SYNEDRA
TABELLARIA | | 0 | 220 | 9 | | RHIZOSOLENIALES
RHIZOSOLENIACEAE | | | | | | RHIZOSOLENIA | * | 0 | | - | | CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAE .CHLOROCOCCALESOOCYSTACEAEANKISTRODESMUSCLOSTERIOPSIS | 83
* | 1 0 | <u></u> | Ξ | | CHRYSOPHYTA .CHRYSOPHYCEAE .OCHROMONADALES .OCHROMONADACEAE .OCHROMONAS .XANTHOPHYCEAE .MISCHOCOCCALES .SCIADACEAE .CENTRITRACTUS | * | 0 | | - | | CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAECHROOCOCCALESCHROOCOCCACEAE | | | | 1 | | ANACYSTISGOMPHOSPHAERIANOSTOCALESNOSTOCACEAE | 5000#
 | 88 | 1400# | 63 | | ANABAENAOSCILLATORIALESOSCILLATORIACEAE | | - | 490# | 22 | | OSCILLATORIA | 140 | 2 | | - | | EUGLENOPHYTA (EUGLENOIDS) .EUGLENOPHYCEAEEUGLENALESEUGLENACEAETRACHELOMONAS PYRRHOPHYTA (FIRE ALGAE) | 55 | 1 | | _ | | .DINOPHYCEAEDINOKONTAEPERIDINIACEAEPERIDINIUM | * | 0 | | :
- | ## 483000092392601 Namakan lake above kettle falls near international falls, mn | DATE | TIME | SAM-
PLING
DEPTH
(FEET)
(00003) | RESER-
VOIR
DEPTH
(FEET)
(72025) | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS)
(00095) | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(UMHOS)
(90095) | PH
(UNITS)
(00400) | PH
LAB
(UNITS)
(00403) | TEMPER-
ATURE
(DEG C)
(00010) | TRANS-
PAR-
ENCY
(SECCHI
DISK)
(M)
(00078) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | |-----------|--|---|--|--|---|--|--|---|---|---| | MAY
17 | 1400 | | 56 | 48 | 51 | 7,2 | 7.4 | 7.6 | 2.60 | 13.0 | | AUG
18 | 1315 | 11.8 | 100 | 41 | 44 | 7.5 | 7.4 | 20.1 | 3.6 | 7.4 | | | OXYGEN, | | SOLIDS, | | NITRO- | NITRO- | | | CHLOR-A | CHLOR-B | | DATE | DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | BICAR-
BONATE
IT-FLD
(MG/L
AS
HCO3)
(99440) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHOS-
PHORUS,
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS,
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHYTO-
PLANK-
TON
CHROMO
FLUOROM
(UG/L)
(70953) | PHYTO-
PLANK-
TON
CHROMO
FLUOROM
(UG/L)
(70954) | | MAY
17 | 113
| 20 | 42 | .06 | .12 | .50 | .016 | .001 | 5.10 | <.100 | | AUG
18 | 84 | | 40 | .05 | .04 | .30 | .008 | .002 | •300 | <.100 | 483000092392601 NAMAKAN LAKE ABOVE KETTLE FALLS NEAR INTERNATIONAL FALLS, MN--Continued PHYTOPLANKTON ANALYSES, MAY 1982 TO AUGUST 1982 | DATE
TIME | | 17,82
400 | | 18,82
315 | |---|-------------------|---------------------------------|--------------|--------------------------| | TOTAL CELLS/ML | 2 | 200, | 3 | 500 | | DIVERSITY: DIVISION .CLASS .ORDERFAMILYGENUS | | 0.6
0.6
1.1
1.2
2.0 | | 0.6
0.6
1.3
1.3 | | ORGANISM | CELLS
/ML | PER-
CENT | CELLS
/ML | PER-
CENT | | BACILLARIOPHYTA (DIATOMS) .BACILLARIOPHYCEAE .EUPODISCALESCOSCINODISCACEAECYCLOTELLAMELOSIRASTEPHANODISCUS .FRAGILARIALESFRAGILARIACEAEFRAGILARIA | 750#
1000#
 | | *
55
* | 0
2
0 | | HANNAEA | 29 | 1 | 220 | 6 | | TABELLARIA .NAVICULALESNAVICULACEAENAVICULA | 14 | 1 | 220 | - | | CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAE .CHLOROCOCCALESCHLOROCOCCACEAESCHROEDERIAMICRACTINIACEAEMICRACTINIUMOOCYSTACEAE | 14
43 | 1 2 | <u></u> | - | | ANKISTRODESMUS
OOCYSTIS | 14 | 1 - | 41 | 1 | | CHRYSOPHYTA .CHRYSOPHYCEAE .OCHROMONADALESOCHROMONADACEAEOCHROMONASSYNURACEAEMALLOMONAS |
58 | -
3 | 28 | 1 - | | CRYPTOPHYTA (CRYPTOMONADS) .CRYPTOPHYCEAECRYPTOMONADALESCRYPTOMONADACEAECRYPTOMONAS | | | * | 0 | | CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAECHROOCOCCALESCHROOCOCCACEAE AGMENTILIUM | | | 390 | 11 | | AGMENELLUM
ANACYSTIS | | - | 690# | 20 | | GOMPHOSPHAERIANOSTOCALESNOSTOCACEAEANABAENA | | - | 1500#
500 | 14 | | EUGLENOPHYTA (EUGLENOIDS) .EUGLENOPHYCEAE .EUGLENALESEUGLENACEAETRACHELOMONAS | 14 | 1 | | | | PYRRHOPHYTA (FIRE ALGAE) .DINOPHYCEAEDINOKONTAEPERIDINIACEAEPERIDINIUM | 72 | 3 | | - | ## 483103092482501 OSLO LAKE NEAR INTERNATIONAL FALLS, MN | DATE | TIME | SAM-
PLING
DEPTH
(FEET)
(00003) | RESER-
VOIR
DEPTH
(FEET)
(72025) | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS)
(00095) | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(UMHOS)
(90095) | PH
(UNITS)
(00400) | PH
LAB
(UNITS)
(00403) | TEMPER-
ATURE
(DEG C)
(00010) | COLOR
(PLAT-
INUM-
COBALT
UNITS)
(00080) | TRANS-
PAR-
ENCY
(SECCHI
DISK)
(M)
(00078) | OXYGEN, DIS- SOLVED (MG/L) (00300) | |-----------|------|---|--|--|---|--------------------------|---------------------------------|--|---|--|------------------------------------| | MAY
20 | 1130 | | 33 | 19 | 24 | 6.5 | 6.7 | 14.2 | 20 | 2.40 | 9.7 | | AUG
17 | 1145 | 9.40 | 35 | 19 | 37 | 6.9 | 6.9 | 20.4 | 42 | 3.00 | 8.8 | | DATE | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | HARD-
NESS
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | BICAR-
BONATE
IT-FLD
(MG/L
AS
HCO3)
(99440) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | |------------------------|---|---|---|---|---|--|---|--|--|---| | MAY
20
AUG
17 | 97
101 | 9 | 2.1
2.1 | 1.0 | 1.1 | .6
.4 | 8.0
8.0 | 3.0
3.0 | 1.0 | 30
32 | | DATE | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | SOLIDS,
RESIDUE
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHOS-
PHORUS,
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS,
DIS-
SOLVED
(MG/L
AS P)
(00666) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | CHLOR-A
PHYTO-
PLANK-
TON
CHROMO
FLUOROM
(UG/L)
(70953) | CHLOR-B
PHYTO-
PLANK-
TON
CHROMO
FLUOROM
(UG/L)
(70954) | |------------------|--|--|--|--|--|---|---|---|--|--| | MAY
20
AUG | .04 | 3 | .10 | .94 | .017 | .007 | 91 | 3 | 6.00 | <.100 | | 17 | .04 | 1 | <.01 | •50 | .008 | <.001 | 210 | 100 | 1.00 | <.100 | #### 483103092482501 OSLO LAKE NEAR INTERNATIONAL FALLS, MN--Continued | PHYTOPLANKTON ANALYSES. | YAM | 1982 | TO | AUGUST | 1982 | |-------------------------|-----|------|----|--------|------| |-------------------------|-----|------|----|--------|------| | DATE
TIME | MAY 20,8
1130 | 32 AUG 17,82 | |--|---------------------------------|--------------------------| | TOTAL CELLS/ML | 450 | 2500 | | DIVERSITY: DIVISION .CLASSORDERFAMILYGENUS | 1.8
1.8
2.1
2.1
2.3 | 1.1
1.1
1.9
1.9 | | ORGANISM | CELLS PE | | | BACILLARIOPHYTA (DIATOMS) .BACILLARIOPHYCEAEEUPODISCALESCOSCINODISCACEAEMELOSIRA | - | 140 6 | | CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAECHLOROCOCCALESOOCYSTACEAEQUADRIGULA | <u></u> - | ·
58 2 | | SCENEDESMACEAESCENEDESMUS | 55 12 | 29 1 | | VOLVOCALESCHLAMYDOMONADACEAECHLAMYDOMONASCHLOROGONIUM | 120# 27
14 3 | == = | | CHRYSOPHYTA .CHRYSOPHYCEAE .OCHROMONADALESDINOBRYACEAEDINOBRYON | 41 9 | 220 9 | | CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAECHROOCOCCALESCHROOCOCCACEAE | | | | ANACYSTIS
GOMPHOSPHAERIA
.NOSTOCALES | 180# 39 | 1000# 40 | | NOSTOCACEAE
ANABAENA | | 1000# 41 | | EUGLENOPHYTA (EUGLENOIDS) .EUGLENOPHYCEAEEUGLENALESEUGLENACEAETRACHELOMONAS | 28 6 | 14 1 | | PYRRHOPHYTA (FIRE ALGAE) .DINOPHYCEAEDINOKONTAEPERIDINIACEAE | | | | PERIDINIUM | 14 3 | 29 1 | ## 483226092001401 LOCATOR LAKE NEAR INTERNATIONAL FALLS, MN | DATE | TIME | SAM-
PLING
DEPTH
(FEET)
(00003) | RESER-
VOIR
DEPTH
(FEET)
(72025) | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS)
(00095) | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(UMHOS)
(90095) | PH
(UNITS)
(00400) | PH
LAB
(UNITS)
(00403) | TEMPER-
ATURE
(DEG C)
(00010) | COLOR
(PLAT-
INUM-
COBALT
UNITS)
(00080) | TRANS-
PAR-
ENCY
(SECCHI
DISK)
(M)
(00078) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | |-----------|------|---|--|--|---|--------------------------|---------------------------------|--|---|--|--| | MAY
19 | 1300 | | 49 | 25 | 36 | 6.3 | 69.0 | 12.4 | 20 | 2.80 | 10.0 | | AUG
17 | 1530 | 9.70 | 48 | 26 | 32 | 7.4 | 6.9 | 21.3 | 40 | 3.1 | 9.8 | | DATE | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | HARD-
NESS
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | BICAR-
BONATE
IT-FLD
(MG/L
AS
HCO3)
(99440) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | |------------------|---|---|---|---|---|--|---
--|--|---| | MAY
19
AUG | 97 | 12 | 2.7 | 1.2 | 1.2 | .6 | 6.0 | 5.0 | 1.0 | 32 | | 17 | 116 | 11 | 2.7 | 1.1 | 1.0 | •3 | 5.0 | 4.0 | .7 | 34 | | DATE | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | SOLIDS,
RESIDUE
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHOS-
PHORUS,
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS,
DIS-
SOLVED
(MG/L
AS P)
(00666) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953) | CHLOR-B
PHYTO-
PLANK-
TON
CHROMO
FLUOROM
(UG/L)
(70954) | |------------------------|--|--|--|---|--|---|---|---|---|--| | MAY
19
AUG
17 | .04 | 3 | .06
<.01 | .50
.30 | .014 | .008 | 94
40 | 6
5 | 5.00
<.100 | <.100
<.100 | 483226092001401 LOCATOR LAKE NEAR INTERNATIONAL FALLS, MN--Continued PHYTOPLANKTON ANALYSES, MAY 1982 TO AUGUST 1982 | INITIOI DANKTON ANABIBED, MAI | . 1,02 10 | noa ob. | . 1702 | | |--|--------------|---------------------------------|---------------------------|--------------------------| | DATE
TIME | | 19,82
300 | | 17,82
530 | | TOTAL CELLS/ML | 1 | 700 | 7 | 800 | | DIVERSITY: DIVISION .CLASSORDERFAMILYGENUS | | 1.7
1.7
2.1
2.5
2.5 | | 0.9
0.9
1.3
1.3 | | ORGANISM | CELLS
/ML | PER-
CENT | CELLS
/ML | PER-
CENT | | BACILLARIOPHYTA (DIATOMS) .BACILLARIOPHYCEAEEUPODISCALESCOSCINODISCACEAECYCLOTELLAMELOSIRASTEPHANODISCUS | 14
14 | 1 - 1 |
43
* | -
1
0 | | FRAGILARIALESFRAGILARIACEAETABELLARIA | | _ | 1300# | 17 | | NAVICULALES
NAVICULACEAE
FRUSTULIA | | _ | * | 0 | | CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAECHLOROCOCCALESCHLOROCOCCACEAE | | | 1 | | | SCHROEDERIA
OOCYSTACEAE | | - | * | 0 | | ANKISTRODESMUS
OOCYSTIS | 69
 | <u>4</u> | * | 0 | | TREUBARIA
PALMELLACEAE | | - | * | 0 | | SPHAEROCYSTISSCENEDESMACEAE | 210 | 12 | | - | | CRUCIGENIAVOLVOCALES | 220 | 13 | | - | | CHLAMYDOMONADACEAE
CHLAMYDOMONAS | 170 | 10 | - | - | | CHRYSOPHYTA .CHRYSOPHYCEAECHROMULINALESCHRYSAMOEBACEAECHRYSAMOEBAOCHROMONADALES | 41 | 2 | | _ | | DINOBRYACEAE
DINOBRYON | 14 | 1 | * | 0 | | OCHROMONADACEAE
OCHROMONAS | 55 | 3 | | _ | | CRYPTOPHYTA (CRYPTOMONADS) CRYPTOPHYCEAE CRYPTOMONADALES CRYPTOCHRYSIDACEAE CHROOMONAS CRYPTOMONADACEAE | | <u>.</u> | '

 | 0 | | CRYPTOMONAS CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAE | 28 | 2 | - | - | | CHROOCOCCALESCHROOCOCCACEAEANACYSTISGOMPHOSPHAERIANOSTOCALESNOSTOCACEAE | 790#
 | 47
- | 2600#
2900# | - | | ANABAENA
APHANIZOMENON | | - | 140
580 | 2
7 | | EUGLENOPHYTA (EUGLENOIDS) .EUGLENOPHYCEAEEUGLENALESEUGLENACEAETRACHELOMONAS | 69 | 4 | * | 0 | | PYRRHOPHYTA (FIRE ALGAE) .DINOPHYCEAEDINOKONTAE | | | | | | PERIDINIACEAE
PERIDINIUM | | _ | # | 0 | # 483304093062701 RAINY LAKE AT BLACK BAY NEAR INTERNATIONAL FALLS, MN # WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | DATE | TIME | SAM-
PLING
DEPTH
(FEET)
(00003) | RESER-
VOIR
DEPTH
(FEET)
(72025) | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS)
(00095) | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(UMHOS)
(90095) | PH
(UNITS)
(00400) | PH
LAB
(UNITS)
(00403) | TEMPER-
ATURE
(DEG C)
(00010) | TRANS-
PAR-
ENCY
(SECCHI
DISK)
(M)
(00078) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | |-----------|------|---|--|--|---|--------------------------|---------------------------------|--|--|--|---| | MAY
19 | 0910 | | 7 | 77 | 83 | 7.2 | 7.5 | 14.3 | .90 | 9.1 | 92 | | AUG
16 | 1210 | 2.60 | 6 | 90 | 80 | 9.7 | 8.0 | 22.4 | .80 | 13.1 | 157 | | | | | SOLIDS, | | NITRO- | NITRO- | | | CHLOR-A | CHLOR-B | |-----------|---------|---------|---------|---------|---------|----------|---------|---------|---------|---------| | | BICAR- | CAR- | RESIDUE | SOLIDS, | GEN, | GEN, AM- | | PHOS- | PHYTO- | PHYTO- | | | BONATE | BONATE | AT 180 | DIS- | NO2+NO3 | MONIA + | PHOS- | PHORUS, | PLANK- | PLANK- | | | IT-FLD | IT-FLD | DEG. C | SOLVED | DIS- | ORGANIC | PHORUS, | DIS- | TON | TON | | | (MG/L | (MG/L | DIS- | (TONS | SOLVED | TOTAL | TOTAL | SOLVED | CHROMO | CHROMO | | | AS | AS | SOLVED | PER | (MG/L | (MG/L | (MG/L | (MG/L | FLUOROM | FLUOROM | | DATE | HCO3) | CO3) | (MG/L) | AC-FT) | AS N) | AS N) | AS P) | AS P) | (Ua/L) | (UG/L) | | | (99440) | (99445) | (70300) | (70303) | (00631) | (00625) | (00665) | (00666) | (70953) | (70954) | | 14 4 37 | | | | | | | | | | | | MAY | h O | | 70 | 3.0 | 3 h | 70 | ٥٥٥ | 000 | 7.60 | / 100 | | 19
AUG | 42 | | 72 | .10 | .14 | •79 | .050 | •008 | 7.00 | <.100 | | 16 | 25 | 13 | 64 | .09 | <.01 | 2.70 | .062 | .008 | 17.0 | <.100 | | 10 | 2) | 13 | 04 | •09 | V.01 | 2.10 | .002 | •000 | 17.0 | (*100 | 483304093062701 RAINY LAKE AT BLACK BAY NEAR INTERNATIONAL FALLS, MN--Continued PHYTOPLANKTON ANALYSES, MAY 1982 TO AUGUST 1982 | DATE
TIME | | 19,82
910 | | 16,82
210 | |---|--------------|----------------------|--------------|----------------------| | TOTAL CELLS/ML | 69 | 00 | 15000 | 00 | | DIVERSITY: DIVISION .CLASS .ORDERFAMILYGENUS | 1
1 | •5
•5
•6
•4 | 0
0
0 | .0
.0
.8
.8 | | ORGANISM | CELLS
/ML | PER-
CENT | CELLS
/ML | PER-
CENT | | BACILLARIOPHYTA (DIATOMS) BACILLARIOPHYCEAE BUPODISCALES COSCINODISCACEAE CYCLOTELLA MELOSIRA | 360
4000# | |
 |
 | | STEPHANODISCUSFRAGILARIALESFRAGILARIACEAE | 79 | 1 | | - | | ASTERIONELLA
FRAGILARIA | 1100#
79 | 1 | | _ | | SYNEDRATABELLARIANAVICULALESCYMBELLACEAE | 300
180 | 3 | | - | | CYMBELLA
NAVICULACEAE | * | 0 | | - | | NAVICULASURIRELLALESSURIRELLACEAE | 160 | 2 | | - | | SURIRELLA CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAECHLOROCOCCALESDICTYOSPHAERIACEAE | 40 | 1 | | _ | | DICTYOSPHAERIUM
OOCYSTACEAE | 260 | 4 | | - | | ANKISTRODESMUSSCENEDESMACEAE | 60 | 1 | | - | | COELASTRUMSCENEDESMUS .ZYGNEMATALESDESMIDIACEAE | 160
79 | 2
1 | | _ | | COSMARIUM | 60 | 1 | | - | | CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAE .CHROOCOCCALESCHROOCOCCACEAEGOMPHOSPHAERIA | | | 40000# | 27 | | NOSTOCALESNOSTOCACEAEANABAENA | | _ | 30000# | 20 | | APHANIZOMENON | | - | 79000# | 53 | | EUGLENOPHYTA (EUGLENOIDS) .EUGLENOPHYCEAEEUGLENALESEUGLENACEAEEUGLENATRACHELOMONAS | *
79 | 0
1 | + | | | PYRRHOPHYTA (FIRE ALGAE) .DINOPHYCEAEDINOKONTAE | | | | | | PERIDINIACEAE
PERIDINIUM | | - | * | 0 | NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15% * - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2% # ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS # 483622092560701 RAINY LAKE AT BRULE NARROWS NEAR INTERNATIONAL FALLS, MN # WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | DATE | TIME | SAM-
PLING
DEPTH
(FEET)
(00003) | RESER-
VOIR
DEPTH
(FEET)
(72025) | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS)
(00095) | CIFIC
CON-
DUCT-
ANCE
LAB
(UMHOS)
(90095) | PH
(UNITS)
(00400) | PH
LAB
(UNITS)
(00403) | TEMPER-
ATURE
(DEG C)
(00010) | TRANS-
PAR-
ENCY
(SECCHI
DISK)
(M)
(00078) | OXYGEN, DIS- SOLVED (MG/L) (00300) | |-----------|------|---|--|--|---|--------------------------|---------------------------------|--|--|------------------------------------| | MAY
19 | 1000 | | 17 | 41 | 48 | 6.9 | 7.4 | 7.3 | 2.40 | 12.5 | | AUG
16 | 1330 | 10.8 | 15 | 42 | 48 | 7.8 | 7.6 | 19.7 | 3.4 | 9.7 | | | OXYGEN, | | SOLIDS, | | NITRO- | NITRO- | | | CHLOR-A | CHLOR-B | |------|---------|---------|---------|---------|---------|----------|---------|---------|---------|---------| | | DIS- | BICAR- | RESIDUE | SOLIDS, | GEN, | GEN, AM- | | PHOS- | PHYTO- | PHYTO- | | | SOLVED | BONATE | AT 180 | DIS- | N02+N03 | MONIA + | PHOS- | PHORUS, | PLANK- | PLANK- | | | (PER- | IT-FLD | DEG. C | SOLVED | DIS- | ORGANIC |
PHORUS, | DIS- | TON | TON | | | CENT | (MG/L | DIS- | (TONS | SOLVED | TOTAL | TOTAL | SOLVED | CHROMO | CHROMO | | | SATUR- | AS | SOLVED | PER | (MG/L | (MG/L | (MG/L | (MG/L | FLUOROM | FLUOROM | | DATE | ATION) | HCO3) | (MG/L) | AC-FT) | AS N) | AS N) | AS P) | AS P) | (UG/L) | (UG/L) | | | (00301) | (99440) | (70300) | (70303) | (00631) | (00625) | (00665) | (00666) | (70953) | (70954) | | | | | | | | | | | | | | MAY | 100 | 10 | 1 | | - 0 | 1. 6 | 216 | 1 | 1: 00 | | | 19 | 108 | 18 | 40 | •05 | .08 | .46 | .016 | .001 | 4.90 | <.100 | | AUG | 110 | 00 | 1.0 | 0.0 | | | 200 | 4 001 | 1 00 | 4 100 | | 16 | 110 | 20 | 42 | .06 | <.01 | .10 | .008 | <.001 | 1.20 | <.100 | 483622092560701 RAINY LAKE AT BRULE NARROWS NEAR INTERNATIONAL FALLS, MN--Continued PHYTOPLANKTON ANALYSES, MAY 1982 TO AUGUST 1982 | DIVERSITY: DIVISION | DATE
TIME | | 19,82
000 | AUG
1 | 16,82
330 | |---|--|-------------------|-------------------|----------|-------------------| | CLASS ORDER 0.9 1.6 PAMILY 0.9 1.6 GENUS 1.7 1.8 CELLS PER- CELLS PER- /ML CENT /ML CENT BACILLARIOPHYTA (DIATOMS) .BACILLARIOPHYCEAE CYCLOTELIA 830* 24 14 2 CYCLOTELIA 2100* 61 120* 15 PRAGILARIALES FRAGILARIA 2100* 61 120* 15 SYNEDRA 266 2 29 4 AVICULALES ENTOMONEIDACEAE ENTOMONEIDACEAE ENTOMONEIDACEAE ENTOMONEIDACEAE ENTOMONEIS * 0 AVICULACEAE PINNULARIA * 0 AVICULACEAE CHLOROCOCCALES CHLOROCOCCALES CHLOROCOCCALES KIRCHNERIELLA * 0 CHLAMYDOMONADACEAE CHLAMYDOMONADACEAE CHLAMYDOMONAS 170 5 CYANOPHYTA (BLUE-GREEN ALGAE) CHLAMYDOMONAS 170 5 CYANOPHYCEAE CHCROCOCCALES CHCROCOC | TOTAL CELLS/ML | 3 | 500 | | 750 | | DRGANISM ML CENT | .CLASS
ORDER
FAMILY | | 0.7
0.9
0.9 | | 1.2
1.6
1.6 | | BACILLARIOPHYCEÁE .EUPODISCALESCOSCINODISCACEAECYCLOTELLA 830# 24 14 2MELOSIRA 2100# 61 120# 15 .FRAGILARIALESFRAGILARIACEAEFRAGILARIA 130# 17SYNEDRA 56 2 29 4 .NAVICULALESENTOMONEIDACEAEENTOMONEIDACEAEPINNULARIA * 0NAVICULACEAEPINNULARIA * 0 CHLOROPHYTA (GREEN ALGAE) .CHLOROCOCCALESCHLOROCOCCALESCHLOROCOCCACEAESCHROEDERIA 29 4OCYSTACEAEANKISTRODESMUS 130 4KIRCHNERIELLA * 0KIRCHNERIELLA * 0KIRCHNERIELLA * 0CHLAMYDOMONADACEAECHLAMYDOMONADACEAECHLAMYDOMONAS 170 5 CYANOPHYCEAECHCROCOCCALESCHCROCOCCALESCHCROCOCCALESCHCROCOCCALESCHCROCOCCALESCHCROCOCCALESCHCROCOCCALESCHCROCOCCALESCHCROCOCCALESCHCROCOCCALESCHCROCOCCALESCHCROCOCCALESCHCROCOCCALESCHCROCOCCALESCHROC | ORGANISM | | | | | | FRAGILARIACEAEFRAGILARIACEAEFRAGILARIAFRAGILARIASYNEDRA 56 2 29 4 .NAVICULALESENTOMONEIDACEAEENTOMONEISNAVICULACEAEPINNULARIA * 0 CHLOROPHYTA (GREEN ALGAE)CHLOROCOCCACEAESCHROEDERIAOOCYSTACEAEANKISTRODESMUSKIRCHNERIELLA .VOLVOCALESCHLAMYDOMONADACEAECHLAMYDOMONADACEAECHLAMYDOMONAS 170 5 CYANOPHYTA (BLUE-GREEN ALGAE)CYANOPHYCEAECHROCOCCACEAECHROCOCCACEAECHLAMYDOMONAS 170 5 CYANOPHYTA (BLUE-GREEN ALGAE)CYANOPHYTA (FIRE ALGAE)YOLVOCALESCHROCOCCACEAEANACYSTIS 84 2 430# 58 | .BACILLARIOPHYCEAE .EUPODISCALESCOSCINODISCACEAECYCLOTELLA | | | 14 | | | ENTOMONEIS * 0NAVICULACEAEPINNULARIA * 0 CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAECHLOROCOCCALESCHLOROCOCCACEAESCHROEDERIA 29 4OCYSTACEAEANXISTRODESMUS 130 4KIRCHNERIELLA * 0VOLVOCALESCHLAMYDOMONADACEAECHLAMYDOMONAS 170 5 CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAECHROCCCCACEAEANACYSTIS 84 2 430# 58 PYRRHOPHYTA (FIRE ALGAE) .DINOKONTAEPERIDINIACEAE | FRAGILARIACEAE
FRAGILARIA
SYNEDRA
.NAVICULALES |
56 | -
2 | | | | CHLOROPHYTA (GREEN ALGAE) CHLOROPHYCEAE CHLOROCOCCALES CHLOROCOCCACEAE SCHROEDERTA OOCYSTACEAE ANKISTRODESMUS KIRCHNERIELLA VOLVOCALES CHLAMYDOMONADACEAE CHLAMYDOMONADACEAE CHLAMYDOMONADACEAE CHLAMYDOMONAS TO 5 CYANOPHYTA (BLUE-GREEN ALGAE) CYANOPHYCEAE CHROOCOCCACEAE CHROOCOCCACEAE CHROOCOCCACEAE CHROOCOCCACEAE CHROPHYTA (FIRE ALGAE) CDINOKONTAE CDINOKONTAE CPERIDINIACEAE | ENTOMONEIS | * | 0 | | - | | CHLOROPHYCEAE .CHLOROCOCCACEAE .CHLOROCOCCACEAE SCHROEDERIA 29 4 OOCYSTACEAE ANKISTRODESMUS 130 4 KIRCHNERIELLA * 0 .VOLVOCALES .CHLAMYDOMONADACEAE CHLAMYDOMONADACEAE CHLAMYDOMONAS 170 5 CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAE .CHROOCOCCACES .CHROOCOCCACES .CHROOCOCCACEAE ANACYSTIS 84 2 430# 58 PYRRHOPHYTA (FIRE ALGAE) .DINOKONTAE .PERIDINIACEAE | | * | 0 | | - | | OOCYSTACEAEANKISTRODESMUSKIRCHNERIELLA .VOLVOCALESCHLAMYDOMONADACEAECHLAMYDOMONAS 170 5 CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAE .CHROOCOCCALES .CHROOCOCCACEAEANACYSTIS 84 2 430# 58 PYRRHOPHYTA (FIRE ALGAE) .DINOKONTAEPERIDINIACEAE | .CHLOROPHYCEAE
CHLOROCOCCALES
CHLOROCOCCACEAE | | _ | 29 | и | | KIRCHNERIELLA * 0VOLVOCALESCHLAMYDOMONADACEAECHLAMYDOMONAS 170 5 CYANOPHYTA (BLUE-GREEN ALGAE)CHROOCOCCALESCHROOCOCCACEAEANACYSTIS 84 2 430# 58 PYRRHOPHYTA (FIRE ALGAE) .DINOKONTAEDINOKONTAEPERIDINIACEAE | OOCYSTACEAE | 120 | h | -7 | · | | CYANOPHYTA (BLUE-GREEN ALGAE) CYANOPHYCEAE CHROOCOCCACEAE CHROOCOCCACEAE ANACYSTIS PYRRHOPHYTA (FIRE ALGAE) DINOPHYCEAE DINORONTAE PPRIDINIACEAE | KIRCHNERIELLAVOLVOCALES | | | | - | | .CYANOPHYCEAE .CHROOCOCCALESCHROOCOCCACEAEANACYSTIS 84 2 430# 58 PYRRHOPHYTA (FIRE ALGAE) .DINOPHYCEAE .DINOKONTAEPERIDINIACEAE | | 170 | 5 | | - | | PYRRHOPHYTA (FIRE ALGAE) .DINOPHYCEAEDINOKONTAEPERIDINIACEAE | .CYANOPHYCEAE
CHROOCOCCALES
CHROOCOCCACEAE | 84 | 2 | | 58 | | | .DINOPHYCEAE
DINOKONTAE
PERIDINIACEAE | 28 | 1 | | _ | NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15% * - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2% # WATER QUALITY DATA AT STREAMFLOW STATIONS Field determinations of water temperature and specific conductance are made at many streamflow stations in addition to those that are also regular water-quality stations. These data are usually collected at regular intervals during routine visits to the station. Additional data for each station are published elsewhere in this report. WATER QUALITY DATA AT STREAMFLOW STATIONS, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | D ATE | MEASURED
DISCHARGE
(ft ³ /s) | TEMPERA-
TURE
(°C) | SPECIFI
CONDUC
TANCE
(MICRO
MHOS) | C-
E
D- | MEASURED
DISCHARGE
(ft ³ /s) | TEMPERA-
TURE
(°C) | SPECIFIC
CONDUC-
TANCE
(MICRO-
MHOS) | |---|---|--------------------------|---|---|---|--------------------------|--| | | | 04010500 | PIGEON RIV | PER AT MIDDLE FALLS NEAR (| RAND PORTAGE, | , MN | | | OCT.
22, 1981
DEC. | 296 | 2.0 | 70 | A PR
27
MA Y | . 3960 | 4.0 | 50 | | 01
DEC. | 143 | •0 | 95 | 04
JUNE | . 1930 | 3.0 | | | 10
JAN. | 73 | •5 | | 15
JULY | 454 | | | | 15, 1982
FEB. | 95 | .0 | 98 | 20
AUG. | . 466 | | | | 17
MAR. | 107 | •5 | | 11
SEPT. | . 301 | 16.0 | 70 | | 09 | 92 | .0 | 85 | 29 | . 151 | 10.0 | | | | | | 04014500 E | BAPTISM RIVER NEAR BEAVER | BAY, MN | | | | OCT.
21, 1981
NOV. | 259 | 2.7 | 54 | APR.
21
APR. | 537 | •0 | 55 | | 30
JAN. | 51 | .0 | 85 | 26
APR. | . 2290 | 4.5 | <50 | | 14, 1982
MAR. | . 22 | •0 | 125 | 28
JUNE | . 1110 | 3.0 | <50 | | 10
APR. | . 19 | •0 | 120 | 22
AUG. | • 57 | 14.0 | 80 | | 13 | 153 | .0 | 92 | 10 | . 278 | 13.0 | 55 | | | | | 04015330 | KNIFE RIVER
NEAR TWO HARB | ORS, MN | | | | OCT.
21, 1981 | 141 | 4.0 | 88 | APR.
14 | . 824 | •5 | 60 | | DEC.
01 | | •5 | 160 | APR.
19 | _ | 1.0 | 60 | | JAN.
12, 1982 | 3.5 | •0 | 133 | JUNE
23 | _ | 15.0 | 120 | | MAR.
11 | | •5 | 225 | AUG.
13 | _ | 16.5 | 165 | | | | • , | | 25******* | | 2009 | , | | | | 04015475 | PARTRIDGE | RIVER ABOVE COLBY LAKE NE | AR HOYT LAKES | , MN | | | OCT.
15, 1981 | 186 | 9.0 | 115 | APR.
20 | 465 | •0 | 44 | | DEC.
02 | 18 | •0 | 135 | MAY
05 | 314 | 12.0 | 55 | | JAN.
06, 1982 | | •5 | 155 | JUNE
17 | 68 | 16.0 | 128 | | MAR.
03 | | .0 | 250 | AUG.
03 | 40 | 21.0 | 124 | | • | 3.7 | •• | -50 | 3,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | | | | | 04016000 | PARTRIDGE RIVER NEAR AURO | ORA, MN | | | | OCT.
16, 1981 | 65 | 9.0 | 430 | APR.
19 | . 142 | 2.0 | 410 | | DEC. 02 | • | •0 | 510 | JUNE
17 | | 18.0 | 313 | | JAN.
06, 1982 | - | •5 | 320 | AUG.
03 | _ | 21.5 | 325 | | MAR. 03 | | .0 | 577 | 03 | . , | | 3 -2 | | | | •• | _ | ST. LOUIS RIVER NEAR AURO | ORA. MN | | | | OCT. | | | | APR. | • • | | | | 16, 1981
DEC. | 251 | 9.0 | 155 | 19
JUNE | • 5 55 | 1.5 | 84 | | 02
JAN. | • | •.0 | 135 | 17
AUG. | . 222 | 20.0 | 57 | | 07, 1982
MAR. | 47 | •5 | 400 | 03 | . 214 | 21.5 | 59 | | 04 | 29 | .0 | 160 | | | | | WATER QUALTLY DATA AT STREAMPLOW STATIONS, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | DATE | MEASURED
DISCHARGE
(ft ³ /s) | TEMPERA-
TURE
(°C) | SPECIFIC
CONDUC-
TANCE
(MICRO-
MHOS) | DATE | MEASURED
DISCHARGE
(ft ³ /s) | TEMPERA-
TURE
(°C) | SPECIFIC
CONDUC-
TANCE
(MICRO-
MHOS) | |--------------------------|---|--------------------------|--|-----------------------|---|--------------------------|--| | | | | 04018750 ST. | LOUIS RIVER AT FORBE | S, MN | | | | OCT.
21, 1981 | 985 | 6.0 | 155 | MAR.
04 | 121 | .0 | *** | | DEC.
03 | 300 | .0 | 262 | APR.
22 | 2060 | 3.0 | 125 | | JAN.
07, 1982
JAN. | 272 | •5 | 170 | JUNE
25
AUG. | 397 | 18.0 | 210 | | 13 | 126 | •0 | 280 | 05 | 383 | 23.0 | 165 | | | | | 04024000 ST. I | JOUIS RIVER AT SCANLO | N, MN | | | | OCT.
20, 1981 | 6810 | 7.0 | 115 | APR.
20 | 20400 | 2.0 | 75 | | DEC.
02 | 1840 | •5 | 140 | JUNE
21 | 1690 | 18.0 | 160 | | JAN.
13, 1982
MAR. | 1150 | .0 | 147 | AUG.
09 | 2560 | 20.0 | 145 | | 09 | 1090 | .0 | 105 | | | | | | | | | 04024098 DEE | R CREEK NEAR HOLYOKE | , MN | | | | OCT.
05, 1981 | 11 | 10.0 | 225 | APR.
30 | 4.7 | 7.0 | 285 | | NOV.
19 | 2.7 | 3.0 | 290 | JUNE
08 | 1.8 | 16.5 | 305 | | JAN.
07, 1982
MAR. | 1.9 | •0 | 360 | JULY
29 | 1.8 | 17.0 | 275 | | 02 | 3.0 | 2.0 | 300 | | | | | | | | 05046000 03 | TTER TAIL RIVER | BELOW ORWELL DAM NEAR | R FERGUS FALL | S, MN | | | NOV.
24, 1981 | 227 | 4.0 | 450 | APR.
08 | 632 | 3.0 | 350 | | JAN.
18, 1982 | 249 | .0 | 470 | MAY
28 | 845 | 20.0 | 420 | | FEB.
18 | 249 | 3.0 | 450 | JULY
13 | 600 | 24.5 | 400 | | MAR.
24 | 456 | 3.0 | 440 | SEPT.
21 | 129 | 15.0 | 440 | | | | 05050000 | BOIS DE SIOUX | RIVER NEAR WHITE ROC | K, SOUTH DAKO | TA | | | NOV.
24, 1981 | 1.0 | | | APR.
13 | 169 | | 625 | | JAN.
18, 1982 | .0 | | | APR.
23 | 307 | 12.0 | 675 | | FEB.
18 | .0 | | | JUNE
24 | .0 | | | | MAR.
23 | 3.0 | | | JULY
14 | 61 | 26.5 | 1000 | | MAR.
31
APR. | 60 | | | SEPT. | .02 | | | | 08 | 23 | 3.0 | 640 | | | | | | | | | 05061000 ви | FFALO RIVER NEAR HAW | LEY | | | | FEB. 24, 1982 | 21 | •0 | 420 | MAY 27 | 65 | 22.5 | 740 | | MAR.
24 | 91 | 1.0 | 450 | JULY
28 | 48 | 24.5 | 740 | | APR.
02 | 464 | 2.0 | 400 | AUG.
26 | 16 | 17.5 | 730 | | APR.
08 | 244 | 2.5 | 500 | SEPT. 27 | 13 | 13.0 | 800 | | | | 0506 | 51500 SOUTH BRAI | NCH BUFFALO RIVER AT | SABIN, MIN | | | | FEB.
23, 1982 | •0 | | | JUNE
24 | 2.0 | 19.0 | 970 | | MAR.
23 | 408 | 2.5 | 450 | JULY
29 | 2.1 | 21.0 | 940 | | APR.
02 | 1090 | 3.0 | 380 | AUG. 26 | 3.2 | 17.5 | 90 0 | | APR.
16
MAY | 177 | 12.0 | 650 | SEPT. 27 | EST. 5.0 | | | | 27 | 33 | 21.5 | 1100 | | | | | WATER QUALITY DATA AT STREAMFLOW STATIONS, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | DATE | MEASURED
DISCHARGE
(ft ³ /s) | TEMPERA-
TURE
(°C) | SPECIFIC
CONDUC-
TANCE
(MICRO-
MHOS) | DATE | MEASURED
DISCHARGE
(ft ³ /s) | TEMPERA-
TURE
(°C) | SPECIFIC
CONDUC-
TANCE
(MICRO-
MHOS) | |--------------------------|---|--------------------------|--|----------------------|---|--------------------------|--| | | | | 05062000 BUFFAI | O RIVER NEAR DILWOR! | rh, mn | | | | OCT.
27, 1981 | 92 | 3.0 | 825 | APR.
16 | 558 | 10.5 | 550 | | DEC. | 59 | 1.5 | 850 | APR.
29 | 181 | | 770 | | DEC.
17., | 28 | •5 | 875 | MAY
27 | 136 | 19.0 | 900 | | JAN.
29, 1982 | 12 | *** | | JUNE
24 | 30 | 19.5 | 760 | | FEB. 23 | 18 | •0 | 800 | JULY
28 | 72 | 24.0 | 720 | | MAR.
23, | 500 | 2.0 | 410 | AUG.
26 | 16 | 17.5 | 670 | | APR.
02 | 2200 | 2.0 | 320 | SEPT.
27 | 14 | 13.0 | 650 | | APR.
08 | 714 | 1.5 | 540 | | | | | | | | | .50(0500 !!!! | | | | | | O.C.T. | | C | 12005200 MITD HI | CE RIVER AT TWIN VAL | LEY, MN | | | | OCT.
27, 1981 | 254 | 2.0 | 480 | APR.
13 | 7 25 | 1.0 | 425 | | DEC.
08 | 111 | •5 | 580 | MAY
05 | 540 | 14.5 | 300 | | JAN.
20, 1982
MAR. | 53 | .0 | 490 | JULY
08 | 73 | 23.0 | 462 | | 18
MAR. | 189 | •0 | 389 | AUG.
26 | 14 | 17.0 | 525 | | 31 | 1090 | •5 | 260 | | | | | | | | | 05064000 WILD | RICE RIVER AT HENDRU | M, MN | | | | OCT.
27, 1981 | 343 | 2.5 | 500 | APR.
13 | 982 | 2.5 | 410 | | DEC.
08 | 119 | •5 | 650 | APR.
17 | 1930 | | | | JAN.
19, 1982 | 61 | .0 | 520 | MAY
05 | 579 | 15.0 | 390 | | MAR.
18 | 93 | .0 | 525 | JULY
08 | 86 | 21.0 | 516 | | APR.
01 | 2810 | •5 |) C) | AUG.
25 | 22 | 19.0 | 520 | | 020000000 | 2010 | • • • | _ | SH RIVER NEAR SHELLY | | 17.0 | 720 | | OCT. | | | 0)00)J00 MAIL | APR. | , ru | | | | 27, 1981
DEC. | 17 | 2.5 | 530 | 13
MAY | 289 | 2.0 | 360 | | 08,
JAN. | 2.3 | 1.0 | 850 | 05
JULY | 7.2 | 12.5 | 640 | | 19, 1982
MAR. | .11 | •5 | | 02
AUG. | •37 | 19.0 | 744 | | 17
APR. | •99 | 1.0 | 1040 | 25 | .007 | | | | 01 | 756 | •5 | 280 | | | | | | | | | 05069000 SAND | HILL RIVER AT CLIMAX | , MN | | | | OCT.
28, 1981 | 61 | 5.0 | 660 | APR.
14 | 789 | 1.5 | 400 | | DEC.
08 | 30 | •5 | 770 | APR.
17 | 419 | 3.0 | 600 | | JAN.
19, 1982 | 12 | •0 | 560 | MAY
04 | 115 | 16.0 | 550 | | MAR.
17 | 21 | •0 | 460 | JULY
01 | 24 | 21.0 | 680 | | APR.
01 | 455 | •5 | 300 | AUG.
25 | 11 | 17.0 | 610 | | | | | | KE RIVER NEAR RED LA | KE, MN | | | | NOV. | | | | APR. | _ | _ | | | 05, 1981
DEC. | 674 | 7.0 | 220 | 22
MAY | 116 | 6.0 | 265 | | 17
JAN. | 553 | •0 | | 24
JULY | 1050 | 15.5 | 252 | | 28, 1982
MAR. | 658 | .0 | | 23
SEPT. | 977 | 24.0 | 280 | | 22 | 699 | 1.0 | 320 | 02 | 900 | 18.5 | 255 | WATER QUALITY DATA AT STREAMFLOW STATIONS, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | DATE | MEASURED
DISCHARGE
(ft ³ /s) | TEMPERA-
TURE
(°C) | SPECIFIC
CONDUC-
TANCE
(MICRO-
MHOS) | DATE | MEASURED
DISCHARGE
(ft ³ /s) | TEMPERA-
TURE
(°C) | SPECIFIC
CONDUC-
TANCE
(MICRO-
MHOS) | |------------------|---|--------------------------|--|----------------------|---|--------------------------|--| | | | 05075000 | RED LAKE RIVER | AT HIGH LANDING NEAR | R GOODRIDGE, N | MN | | | NOV.
04, 1981 | 790 | 5.0 | 290 | APR.
15 | 1650 | 5.0 | , 270 | | DEC.
16 | 702 | •0 | 310 | MAY
24 | 1440 | 19.0 | 259 | | JAN.
28, 1982 | 676 | .0 | 290 | JULY
_23 | 1130 | 23.0 | 290 | | MAR.
22 | 693 | •0 | 320 | SEPT.
02 | 917 | 18.0 | 200 | | APR.
14 | 1080 | 1.0 | 250 | | | | | | | | 050 | 76000 THIEF RIVE | ER NEAR THIEF RIVER | FALLS, MN | | | | NOV.
04, 1981 | 17 | 5.0 | 800 | APR.
14 | 1100 | •0 | 270 | | FEB. 23, 1982 | | | | MAY
27 | 492 | 22.0 | 485 | | MAR.
23 | | . •0 | | JULY
20 | 208 | 25.0 | 490 | | APR.
02 | . 354 | .0 | 300 | SEPT.
02 | 22 | 15.5 | 5 3 5 | | | | • | 05078000 CLEARW | ATER RIVER AT PLUMME | ER, MN | | | | FEB. | | | | MAY | 506 | 1.7 | 565 | | 24, 1982
MAR. | | .0 | 520 | 04
JUNE | 596 | 15.0 | 565 | | 24
MAR. | 78 | .0 | 480 | 09
JUNE | 165 | 13.0 | 500 | | 31
APR. | 950 | .5 | 180 | 29
AUG. | 226 | 18.0 | 5 7 5 | | 14
APR. | 969 | 1.5 | 295 | 24 | 47 | 19.0 | 650 | | 18 | 1190 | 3.0 | 410
05078230 LO | ST RIVER AT OKLEE, N | A N | | | | OCT. | | | 0,0,0,0,2,30 110 | APR. | 1.114 | | | | 29, 1981
FEB. | 52 | 5.0 | 770 | 14
MAY | 1150 | 1.0 | 335 | | 24, 1982
MAR. | 7.5 | •0 | 440 | 03
JUNE | 112 | 18.0 | 560 | | 24
MAR. | 19 | •0 | | 29
AUG. | 34 | 15.0 | 724 | | 31
APR. | 900 | •0 | 260 | 24 | 8.8 | 19.0 | 650 | | 12 | 603 | .0 | 340 | | | | | | | | 050 | 78500 CLEARWATE | R RIVER AT RED LAKE | FALLS, MN | | | | OCT.
28, 1981 | 335 | 5.0 | 640 | APR.
13 | 1790 | .0 | 330 | | FEB. 24, 1982 | | .0 | 540 | MAY
04 | 694 | 16.5 | 550 | | MAR.
15 | 94 | •0 | 650 | JULY
01 | 292 | 18.0 | 600 | | APR.
01 | 2800 | •0 | 225 | AUG.
24 | 72 | 21.0 | 660 | | | | | 05079000 RED LA | KE RIVER AT CROOKSTO | ON, MN | | | |
OCT.
27, 1981 | 1270 | 2.5 | 430 | APR.
15 | 7 500 | 1.5 | 315 | | DEC.
07 | | •5 | 410 | MAY
04 | 1980 | 16.5 | 440 | | JAN.
18, 1982 | | •0 | 240 | JUNE
30 | 1410 | 19.5 | 355 | | MAR.
16 | | .0 | 377 | AUG.
25 | 1090 | 20.0 | 345 | | 200000 | 300 | •• | | DLE RIVER AT ARGYLE, | | 2010, | 3.5 | | NOV. | | | , , | APR. | 1 | | | | 04, 1981
FEB. | | 4.0 | 720 | 13
MAY | 338 | •0 . | . 280 | | 25, 1982
MAR. | 1.2 | .0 | 710 | 27
JULY | 52 | 20.0 | 438 | | 23
APR. | . 9.5 | .0 | 680 | 21
SEPT. | 29 | 25.0 | 540 | | 01 | 257 | | 310 | 01 | . ,78 | 19.5 | 615 | | | | | | | 1.7 | | | WATER QUALTIY DATA AT STREAMFLOW STATIONS, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | DATE | MEASURED
DISCHARGE
(ft ³ /s) | TEMPERA-
TURE
(°C) | SPECIFIC
CONDUC-
TANCE
(MICRO-
MHOS) | ;
! | MEASURED
DISCHARGE
(ft ³ /s) | TEMPERA-
TURE
(°C) | SPECIFIC
CONDUC-
TANCE
(MICRO-
MHOS) | |--------------------------|---|--------------------------|--|---|---|--------------------------|--| | | | 0510450 | O ROSEAU R | IVER BELOW SOUTH FORK NEAR | R MALUNG, MA | ı | | | NOV.
03, 1981
DEC. | 53 | 4.5 | 352 | A PR.
21
MA Y | 1220 | •5 | 240 | | 15 | 17 | .0 | | 26 | 208 | 17.5 | 310 | | JAN.
27, 1982 | 4.7 | .0 | 630 | JULY
22 | 35 | 24.0 | 390 | | MAR.
24 | 8.3 | .0 | 540 | SEPT.
01 | 38 | 17.0 | 250 | | APR.
14 | 928 | 1.0 | 165 | | | | | | | | | 05107500 | O ROSEAU RIVER AT ROSS, M | N | | | | NOV. | 7 11 0 | h = | 222 | APR. | 1010 | _ | 060 | | 03, 1981
DEC. | 148 | 4.5 | 333 | 20
MAY | 1810 | •5 | 260 | | 15
JAN. | 58 | •0 | 440 | 25
JULY | 606 | 17.5 | 328 | | 26, 1982
MAR. | 7.4 | •0 | 610 | 22
AUG. | 78 | 24.5 | 375 | | 24
APR. | 11 | .0 | 540 | 31 | 74 | 16.0 | 324 | | 15 | 1310 | 3.0 | 200 | | | | | | | | 05112000 | ROSEAU RIVE | ER BELOW STATE DITCH 51 NE | AR CARIBOU, | ми | | | NOV.
03, 1981 | 221 | 3.7 | 370 | APR.
21 | 1290 | 5.0 | 240 | | DEC.
15 | 125 | •0 | 450 | MAY
19 | 1120 | 14.0 | | | JAN.
07, 1982 | 2.8 | .0 | | MAY
25 | 939 | 18.0 | 338 | | JAN.
26 | 12 | •0 | 660 | ЈULY
13 | 391 | 23.0 | 365 | | MAR.
23 | 19 | •0 | 530 | JULY
13 | 388 | 23.0 | 365 | | APR.
01 | 89 | •0 | 302 | AUĞ.
31 | 81 | 15.0 | 357 | | APR.
15 | 766 | 1.0 | 220 | SEPT.
28 | 36 | 11.5 | | | | | | 05124480 | KAWISHIWI RIVER NEAR ELY, | MN | | | | OCT. | | | | JUNE | | | | | 14, 1981
MAR. | 46 | 10.5 | 32 | 15
AUG. | 371 | 18.0 | <50 | | 10, 1982
MAY | 46 | .0 | 133 | 04 | 117 | 22.5 | 34 | | 06 | 660 | 10.5 | 32 | | | | | | | | | 05124990 | FILSON CREEK NEAR ELY, I | MN | | | | OCT.
13, 1981 | 7.0 | 9.0 | <50 | APR.
26 | 61 | 6.0 | <50 | | DEC.
01 | 2.2 | •0 | 37 | MAY
05 | 25 | 12.0 | 22 | | JAN.
05, 1982 | 1.9 | •5 | 45 | JUNE
16 | 6.8 | 15.0 | <50 | | MAR. | •34 | .0 | 43 | AUG.
04 | .38 | 25.0 | 38 | | APR.
20 | 30 | .0 | 38 | V 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | •30 | 2,74 | 35 | | | 50 | | | AWISHIWI RIVER NEAR WINTO | J MN | | | | OCT. | | | 0)12,000 11. | MAY | •, | | | | 14, 1981 | 350 | | | 06, 1982 | 4380 | 8.0 | 60 | | | | | 0512 7 500 E | BASSWOOD RIVER NEAR WINTON | , MN | | | | JUNE
22, 1982 | 2220 | 10.0 | <36 | | | | | | cc, 1702··· | 2230 | 19.0 | | | CARMAN YTOG | 10 | | | SEPT. | | 05128000 | IN MARABAN KI | IVER AT OUTLET OF LAC LA C | NUTAR CNIAR | 10 | | | 02, 1982 | 3860 | 18.0 | <50 | | | | | # WATER QUALTIY DATA AT STREAMFLOW STATIONS, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | DATE | MEASURED
DISCHARGE
(ft ³ /s) | TEMPERA-
TURE
(°C) | SPECIFIC
CONDUC-
TANCE
(MICRO-
MHOS) | DATE | MEASURED
DISCHARGE
(ft ³ /s) | TEMPERA-
TURE
(°C) | SPECIFIC
CONDUC-
TANCE
(MICRO-
MHOS) | |--------------------------|---|--------------------------|--|----------------------|---|--------------------------|--| | | | 0512 | 29115 VERMILLI | ON RIVER NEAR CRANE | LAKE, MN | | | | OCT.
19, 1981
NOV. | 584 | 9.0 | | APR.
26
MAY | 2960 | 7.0 | 50 | | 30
JAN. | 324 | •0 | 73 | 03
MAY | 1850 | 13.0 | 50 | | 14, 1982 | 189 | •5 | 65 | 24 | 2550 | 18.0 | 60 | | MAR.
03 | 181 | •0 | 75 | JUNE
21 | 976 | 17.0 | 60 | | APR.
21 | 1890 | •0 | 45 | AUG.
02 | 478 | 23.5 | 70 | | | | | -1 | | T 16 1617 | | | | | | 05 | 5130500 STURGE | ON RIVER NEAR CHISHO | LM, MN | | | | OCT.
13, 1981
NOV. | 126 | 9.0 | 85 | APR.
01
APR. | 45 | •5 | 130 | | 30
JAN. | 79 | •0 | 80 | 16
APR. | 455 | •5 | 70 | | 08, 1982
FEB. | 28 | •5 | | 21
JUNE | 1030 | •0 | 51 | | 08 | 20 | •0 | 136 | 24 | 98 | 19.0 | 66 | | MAR.
01 | 19 | .0 | 140 | AUG.
02 | 102 | 20.5 | 113 | | | | 051 | 31500 ፣ ተምጥርም ቹ | ORK RIVER AT LITTLE | BUBK WN | | | | o am | | 0)1 | J1700 H111H | | ronn, m | | | | OCT.
01, 1981 | 427 | 8.0 | 190 | APR.
23 | 11100 | | | | NOV. | 1040 | 5.5 | 75 | APR.
27 | 7860 | 7.0 | 95 | | DEC. | 338 | •0 | 160 | MAY
19 | 10200 | 15.5 | 80 | | FEB.
01, 1982 | 147 | •0 | 220 | JULY
21 | 785 | 22.0 | 130 | | APR.
02 | 197 | •0 | 188 | SEPT.
13 | 237 | 17.0 | 180 | | | | 05 | 122500 PATNY B | IVER AT MANITOU RAP | The MN | | | | 0.00 | | 0) | 1)))OO MAINI N | | , | | | | OCT.
01, 1981 | 5610 | 7.3 | 123 | JULY 20 | 23600 | 19.5 | 79 | | APR.
27, 1982 | 29900 | 7.0 | 95 | SEPT.
14 | 8180 | 15.0 | 105 | | | | | 0512H200 0512H | RIVER NEAR BAUDETTI | e MN | | | | NOT | | | ODIDASOO WALID | | env e | | | | NOV.
02, 1981
DEC. | 412 | 5.0 | 150 | APR.
16
MAY | 3810 | 1.0 | 110 | | 16 | 70 | •0 | | 21 | 1650 | 13.0 | 155 | | FEB.
03, 1982
APR. | 15 | •0 | | JULY
23
SEPT. | 526 | 19.5 | | | 01 | 50 | •0 | 257 | 15 | 92 | 11.0 | 215 | GROUND-WATER RECORDS Figure 8.--Location of ground-water wells ## BECKER COUNTY 464613095524801. Local number, 138N41W17ADA01. LOCATION.--Lat 46°46'13", long 95°52'48", in NE4SE4NE4 sec.17, T.138 N., R.41 W., Hydrologic Unit 09020103, east shore of Lake Sallie. Owner: U.S. Geological Survey. AQUIFER. -- Buried sand and gravel of Pleistocene Age. WELL CHARACTERISTICS. -- Drilled observation artesian well, diameter 6 in (0.15 m), depth 234 ft (71.3 m), screened 222 to 234 ft (67.7 to 71.3 m). DATUM .-- Land-surface datum is 1,333.2 ft (406.4 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 4.40 ft (1.34 m) above land-surface datum. REMARKS .-- Water level affected by pumping of nearby well. PERIOD OF RECORD. -- March 1973 to current year. EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 4.44 ft (1.35 m) above land-surface datum, May 23, 27, 1975; lowest, 2.47 ft (0.75 m) below land-surface datum, July 25, 1977. # WATER LEVEL, IN FEET ABOVE LAND-SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | DAY | OCT | NOA | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|------------------------------|------------------------------|--------------------------------------|-----|--------------------------------------|------|--------------------------------------|--------------------------------------|--|--|--| | 5
10
15
20
25
EOM | 1.95
2.20
1.80
2.60
2.75
2.75 | 2.85
2.75
2.80
2.80 | 2.80
2.80
3.43
3.50 | 3.55
3.40
3.55
3.60
3.20 | | 3.25
3.20
3.25
3.20
3.25 | 3.28 | 3.06
3.20
3.21
2.13
1.96 | 1.59
2.09
3.10
2.40
1.40 | 1.30
2.90
1.49
2.25
2.50
1.35 | 0.95
2.20
1.00
2.05
1.45
1.20 | 0.95
1.25
2.40
2.00
1.25
1.70 | WTR YEAR 1982 HIGHEST 4.37 MAY 22, 1982 LOWEST 0.32 OCT. 6, 1981 464401095571301. Local number, 138N42W26CDA01. LOCATION.--Lat 46°44'01", long 95°57'13", in NEASEASWA sec.26, T.138 N., R.42 W., Hydrologic Unit 09020103, on Don Bullock farm. Owner: Don Bullock. AQUIFER .-- Surficial sand and gravel of Pleistocene Age. WELL CHARACTERISTICS .-- Bored observation water-table well, diameter 14 in (0.03 m), depth 90 ft (27.4 m), screened 88 to 90 ft (26.8 to 27.4 m). DATUM.--Altitude of land-surface datum is 1,390 ft (424 m). Measuring point: Top of casing, 3.00 ft (0.91 m) above land-surface datum. PERIOD OF RECORD .-- November 1977 to current year. EXTREMES FOR PERIOD OF RECORD. --Highest water level, 52.62 ft (16.04 m) below land-surface datum, June 13, 1980, Nov. 23, 1980; lowest, 53.99 ft (16.46 m) below land-surface datum, Jan. 22, 1979. | DATE | WATER
LEVEL | |--------|----------------|--------|----------------|--------|----------------|-------|----------------|-------|----------------|--------|----------------| | MAR 21 | 53.65 | APR 26 | 53.76 | MAY 29 | 53.36 | JUL 3 | 52.96 | AUG 7 | 53.42 | SEP 11 | 53.38 | #### BECKER COUNTY--Continued 464550096095901. Local number, 138N43W18CDA01. LOCATION.--Lat 46045'50", long 96009'59", in NE\\$SE\\$SW\\$ sec.18, T.138 N., R.18 W., Hydrologic Unit 09020103, on Fred Kraft farm. U.S. Geological Survey. Owner: Owner: U.S. Geological Survey. AQUIFER.--Surficial sand and gravel of Pleistocene Age. WELL CHARACTERISTICS.--Bored observation water-table well, diameter 1% in(0.03 m), depth 77 ft (23.5 m), screened 75 to 77 ft (22.9 to 23.5 m). DATUM.--Altitude of land-surface datum is 1,420 ft (433 m). Measuring point: Top of casing, 3.75 ft (1.14 m) above land-surface datum. PERIOD OF RECORD.--November 1977 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 58.47 ft (17.82 m) below land-surface datum, June 1, 1980; lowest, 60.67 ft (18.49 m) below land-surface datum, Mar. 21, 1982. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | DATE | WATER
LEVEL | |--------|----------------|--------|----------------|--------|----------------|-------|----------------|-------|----------------|--------|----------------| | MAR 21 | 60.67 | APR 26 | 60.15 | MAY 29 | 60.14 | JUL 3 | 60.03 | AUG 7 | 60.14 | SEP 11 | 60.33 | 465422095495501. Local number, 140N41W26CCD01. LOCATION.--Lat 46°54'22", long 95°49'55", in SE&SW&SW& sec.26, T.140 N., R.41 W., Hydrologic Unit 09020103, on Paul Scarie farm. Owner: U.S. Geological Survey. Owner: U.S. Geological Survey. AQUIFER.--Surficial sand and gravel of Pleistocene Age. WELL CHARACTERISTICS.--Bored observation water-table well, diameter 1% in (0.03 m), depth 53 ft (16.2 m), screened 51 to 53 ft (15.5 to 16.2 m). DATUM.--Altitude of land-surface datum is 1,422 ft (433 m). Measuring point: Top of casing, 2 40 ft (0.73 m) above land-surface datum. PERIOD OF RECORD.--December 1977 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 30.75 ft (9.37 m) below land-surface datum, May 8, 1978; lowest, 33.98 ft (10.36 m) below land-surface datum, Mar. 21, 1982. | DATE | WATER
LEVEL | |--------|----------------|--------|----------------|--------|----------------|---------|----------------|-------|----------------|--------|----------------| | MAR 31 | 33 08 | APR 26 | 3 2 8 3 | OC VAM | 33 00 | TIII. 3 | 33 33 | AUG 7 | 33 16 | SEP 11 | 33 23 | 140N41W26CCD01 #### BELTRAMT COUNTY 474111094331401. Local number, 149N31W25DCD01. LOCATION.--Lat 47°41'11", long 94°33'14", in SEASWASEA sec.25, T.149 N., R.31 W., Hydrologic Unit 07010101, at Blackduck Lookout Tower. Owner: U.S. Geological Survey. AQUIFER.--Buried sand and gravel of Pleistocene Age. WELL CHARACTERISTICS .-- Drilled observation water-table well, diameter 2 in (0.05 m), depth 157 ft (47.8 m), screened 154 to 157 ft (46.9 to 47.8 m). DATUM.--Land-surface datum is 1,450 ft (442 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 3.10 ft (0.94 m) above land-surface datum. PERIOD OF RECORD.--July 1980 to current year. EXTREMES FOR PERIOD OF RECORD. --Highest water level, 70.63 ft (21.53 m) below land-surface datum, July 28, 1980; lowest, 104.5 ft (31.85 m) below land-surface datum, July 27, 1981. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | DATE | WATER
LEVEL | |-------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------| | NOV 2 | 104.0 | DEC 16 | 102.5 | MAY 21 | 103.3 | JUL 23 | 102.5 | SEP 15 | 102.1 | 474111094331402. Local number, 149N31W25DCD02. LOCATION.--Lat 47°41'11", long 94°33'14", in SEASWASEA sec.25, T.149 N., R.31 W., Hydrologic Unit 07010101, at Blackduck Lookout Tower. Owner: U.S. Geological Survey AQUIFER.--Sandy till of Pleistocene Age. WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 2 in (0.05 m), depth 65 ft (19.8 m), screened 62 to 65 ft (18.9 to 19.8 m). DATUM .- Land-surface datum is 1.448 ft (441.4 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 3.10 ft (0.94 m) above land-surface datum. PERIOD OF RECORD.--July 1980 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 1.51 ft (0.46 m) below land-surface datum, May 21, 1982; lowest, 15.95 ft (4.86 m) below land-surface datum, Sept. 15, 1982. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | DATE | WATER
LEVEL | |-------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------| | NOV 2 | 3.73 | DEC 16 | 4.71 | MAY 21 | 1.51 | JUL 23 | 11.68 | SEP 15 | 15.95 | 474111094331403. Local number, 149N31W25DCD03. LOCATION.--Lat 47°41'11", long 94°33'14", in SEASWASEA sec.25, T.149 N., R.31 W., Hydrologic Unit 07010101, at Blackduck Lookout Tower. Owner: U.S. Geological Survey AQUIFER.--Buried sand of Pleistocene Age. WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 2 in (0.05 m), depth 130 ft (39.6 m), screened 127 to 130 ft (38.7 to 39.6 m). DATUM .-- Land-surface datum is 1,449.7 ft (441.9 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 3.30 ft (1.01 m) above land-surface datum. PERIOD OF RECORD. --July 1980 to current year. EXTREMES FOR PERIOD OF RECORD. --Highest water level, 69.60 ft (21.21 m) below land-surface datum, July 28, 1980; lowest, 102.6 ft (31.27 m) below land-surface datum, July 27, 1981. | DATE | WATER
LEVEL | DATE | WATER
LEVEL | |-------|----------------|--------|----------------| | NOV 2 | 101.9 | SEP 15 | 93.00 | ## BELTRAMI COUNTY--Continued 474111094331404. Local number, 149N31W25DCD04. LOCATION.--Lat 47°41'11", long 94°33'14", in SE&SW&SE& sec.25, T.149 N., R.31 W., Hydrologic Unit 07010101, at Blackduck Lookout Tower. Owner: U.S. Geological Survey. AQUIFER. -- Sandy till of Pleistocene Age. WELL CHARACTERISTICS. -- Drilled observation artesian well, diameter 2 in (0.05 m), depth 77 ft (23.5 m), screened 74 to 77 ft (22.6 to 23.5 m). DATUM.--Land-surface datum is 1,449.3 ft (441.8 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.80 ft (0.85 m) above land-surface datum. PERIOD OF RECORD.--July 1980 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 23.45 ft (7.15 m) below land-surface datum, July 28, 1980; lowest, 74.58 ft (22.73 m) below land-surface datum, July 23, 1982. WATER LEVEL. IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | DATE | WATER
LEVEL | |-------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------| | NOV 2 | 63.75 | DEC 16 | 64.33 | MAY 21 | 72.40 | JUL 23 | 74.58 | SEP 15 | 71.80 | 481711094331601. Local number, 156N31W36DAA01. LOCATION.--Lat 48017'11", long 94033'16", in NE‡NE‡SE‡ sec.36, T.156 N., R.31 W., Hydrologic Unit 09020302, at Ludlow Lookout Tower. Owner: U.S. Geological Survey. AQUIFER.--Sandy clay of Pleistocene Age. WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 2 in (0.05 m), depth 139 ft (42.4 m), screened 136 to 139 ft (41.4 to 42.4 m). DATUM.--Land-surface datum is 1,194.6 ft (364.1 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.15 ft (6.55 m) above land-surface datum. PERIOD OF RECORD.--July 1980 to current year. EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 0.85 ft (0.26 m) below land-surface datum, Nov. 2, 1981; lowest, 3.28 ft (1.00 m) below land-surface datum, Feb. 3, 1982. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | DATE | WATER
LEVEL | |-------|----------------|--------|----------------|-------|----------------|--------|----------------|--------|----------------|--------|-------------------| | NOA 5 | 0.85 | DEC 16 | 1.76 | FEB 3 | 3.28 | MAY 21 | 2.92 | JUL 23 | 1.19 | SEP 15 | Well
lestroyed | 481711094331602. Local number, 156N31W36DAA02. LOCATION.--Lat 48017'11", long 94033'16", in NEtNEtSEt sec.36, T.156 N., R.31 W., Hydrologic Unit 09020302, at Ludlow Lookout Tower. Owner: U.S. Geological Survey AQUIFER .-- Buried sand of Pleistocene Age. WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 2 in (0.05 m), depth 107 ft (32.6 m), screened 104 to 107 ft (31.7 to 32.6 m). DATUM.--Land-surface datum is 1,195.8 ft (364.5 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 1.90 ft (0.58 m) above land-surface datum. PERIOD OF RECORD.—July 1980 to current year. EXTREMES FOR PERIOD OF RECORD.—Highest water level, 3.87 ft (1.18 m) below land-surface datum, Sept. 15, 1982; lowest, 4.78 ft (1.46 m) below land-surface datum, Apr. 23, 1981. | DATE | WATER
LEVEL | |-------|----------------|--------|----------------|-------|----------------|--------|----------------|----------|----------------|--------|----------------| | NOA 5 | 4.60 | DEC 16 | 4.54 | FEB 3 | 4.49 | MAY 21 | 4.21 | JIII. 23 | 4.30 | SEP 15 | 3.87 | ## BELTRAMI COUNTY--Continued 481711094331603. Local number, 156N31W36DAA03 LOCATION.--Lat 48017'11", long 94033'16", in NEANEASEA sec.36, T.156 N., R.31 W., Hydrologic Unit 09020302, at Ludlow Lookout Tower. Owner: U.S. Geological Survey. AQUIFER.--Buried sand of Pleistocene Age. WELL CHARACTERISTICS. -- Drilled observation artesian well, diameter 2 in (0.05 m), depth 82 ft (25.0 m), screened 79 to 82 ft (24.1 to 25.0 m). DATUM.--Land-surface datum is 1,196.7 ft (364.8 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 3.00 ft (0.91 m) above land-surface datum. PERIOD OF RECORD.--July 1980 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 2.72 ft (0.83 m) below land-surface datum, July 23, 1982; lowest, 4.81 ft (1.47 m) below land-surface datum, Apr. 23, 1981. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | DATE | WATER
LEVEL | |-------|----------------|--------|----------------|-------|----------------|--------|----------------|--------|----------------|--------|-------------------| | NOV 2 | 4.49 | DEC 16 | 4.45 | FEB 3 | 4.44 | MAY 21 | 4.35 | JUL 23 | 2.72 | SEP 15 | Well
destroyed | ## CARLTON COUNTY 463437092313301. Local number, 047N17W07AAB01. LOCATION.--Lat 46°34'37", long 92°31'33", in NW&NE&NE& sec.7, T.47 N., R.17 W., Hydrologic Unit 04010301, on Merle Olson farm. Owner: U.S. Geological Survey. AQUIFER.--Surficial sand and gravel of Pleistocene Age. WELL CHARGERISTICS.--Bored observation water-table well, diameter 1½ in (0.04 m), depth 33 ft (10.1 m), screened 31 to 33 ft (9.4 to 10.1 m). DATUM.--Altitude of land-surface datum is 1,110 ft (338 m). Measuring point: Top of easing, 4.00
ft (1.22 m) above land-surface datum. PERIOD OF RECORD.--October 1977 to current year. EXTREMES FOR PERIOD OF RECORD. --Highest water level, 8.74 ft (2.66 m) below land-surface datum, May 5, 1982; lowest, 11.58 ft (3.53 m) below land-surface datum, Mar. 29, 1982. | DATE | WATER
LEVEL | |--------|----------------|-------|----------------|---------|----------------|----------|----------------|-------|----------------| | MAR 29 | 11.58 | MAY 5 | 8.74 | JIIN 11 | 9.70 | JIII. 15 | 0 71 | SEP 6 | 10 Ji1 | ## CARLTON COUNTY -- Continued 463948092280301. Local number, 048N17W02CCC01 LOCATION.--Lat 46°39'48", long 92°28'03", in SW\u00e4SW\u00e4SW\u00e4 sec.2. T.48 N., R.17 W, Hydrologic Unit 04010201, 1.4 mi (2.2 km) west of Carlton. Owner: U. S. Geological Survey. AQUIFER.--Surficial Sand of Pleistocene Age. WELL CHARACTERISTICS .-- Bored observation water-table well, diameter 11 in (0.04 m), depth 28 ft (8.5 m), screened 26 to 28 ft (7.9 to 8.5 m). DATUM.--Altitude of land-surface datum is 1,130 ft (344 m). Measuring point: Top of casing, 2.30 ft (0.70 m) above land-surface datum. PERIOD OF RECORD. --August 1980 to current year. EXTREMES FOR PERIOD OF RECORD. --Highest water level, 21.87 ft (6.67 m) below land-surface datum, June 11, 1982; lowest, 25.60 ft (7.80 m) below land-surface datum, Mar. 29, 1982. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | DATE | WATER
LEVEL | |--------|----------------|--------|----------------|-------|----------------|--------|----------------|--------|----------------|-------|----------------| | OCT 25 | 24.06 | MAR 29 | 25.60 | MAY 5 | 23.75 | JUN 11 | 21.87 | JUL 15 | 22.17 | SEP 6 | 23.13 | 464346092304901. Local number, 049N17W17ADD01. LOCATION.--Lat 46°43'46", long 92°30'49", in SE\SE\NE\ sec.17, T.49 N., R.17 W., Hydrologic Unit 04010201, 1.5 mi (2.4 km) west of Cloquet. Owner: City of Cloquet, well 7. AQUIFER.--Surficial sand and gravel of Pleistocene Age. WELL CHARACTERISTICS .-- Drilled unused water-table well, diameter 48 in (1.22 m), depth 49 ft (14.9 m), screened 39 to 49 ft (11.9 to 14.9 m). DATUM.--Land-surface datum is 1,263.8 ft (385.2 m) National Geodetic Vertical Datum of 1929. Measuring point: Hole in steel cover, 2.30 ft (0.70 m) above land-surface datum. PERIOD OF RECORD.--March 1977 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 6.38 ft (1.94 m) below land-surface datum, May 5, 1982; lowest, 9.05 ft (2.76 m) below land-surface datum, Mar. 7, 1977. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | DATE | WATER
LEVEL | |--------|----------------|--------|----------------|-------|----------------|--------|----------------|--------|----------------|-------|----------------| | OCT 25 | 7.17 | NOV 20 | 7.48 | MAY 5 | 6.38 | JUN 11 | 7.41 | JUL 15 | 7.32 | SEP 6 | 7.58 | # CLAY COUNTY 463854096250701. Local number, 137N45W30CDB01. LOCATION.--Lat 46°38'54", long 96°25'07", in NE\\$SE\\$SW\\$ sec.30, T.137 N., R.45 W., Hydrologic Unit 09020106, in Barnesville. Owner: City of Barnesville, well 3. AQUIFER.--Surficial sand of Pleistocene Age. WELL CHARACTERISTICS.--Drilled unused water-table well, diameter 10 in (0.25 m), depth 73 ft (22.2 m). DATUM.--Altitude of land-surface datum is 1,022 ft (312 m). Measuring point: Top of casing, 1.50 ft (0.46 m) above land-surface datum. PERIOD OF RECORD.--January 1949 to January 1975, May 1980 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 1.86 ft (0.57 m) below land-surface datum, June 9, 1962; lowest, 11.86 ft (3.61 m) below land-surface datum, June 3, 1970. | DATE | WATER
LEVEL | |-------------------|----------------------|-------------------|----------------------|-----------------------|----------------------|----------------------|----------------------|-----------------------|----------------------|-----------------------|----------------------| | OCT 2
9
16 | 9.20
9.08
9.01 | DEC 4
11
18 | 8.79
8.79
8.83 | JAN 29
FEB 5
12 | 9.06
9.14
9.16 | MAR 26
APR 2
9 | 8.96
8.66
8.66 | MAY 21
28
JUN 4 | 8.46
8.48
8.48 | JUL 30
AUG 6
13 | 9.43
9.50
9.65 | | 23
30
NOV 6 | 8.91
8.80
8.78 | JAN 4 | 8.84
8.89 | 19
26
MAR 5 | 9.20
9.20
9.24 | 16
23
30 | 8.65
8.59
8.56 | 11
18
JUL 9 | 8.38
8.95
9.29 | 20
SEP 3
10 | 9.65
9.66
9.68 | | 13
20 | 8.78
8.76 | 15
22 | 8.90
8.94
8.98 | 12
19 | 9.15
9.04 | MAY 7
14 | 8.58
8.48 | 16
23 | 9.25
9.46 | 17
24 | 9.64
9.61 | | 27 | 8.78 | | | | | | | | | | | # CLAY COUNTY--Continued ## CLAY COUNTY--Continued 465237096383901. Local number, 139N47W05CDC01. LOCATION.--Lat 46°52'37", long 96°38'39", in SW&SE&SW& sec.5, T.139 N., R.47 W., Hydrologic Unit 09020104, 2.4 mi (3.9 km) east of Dilworth. Owner: City of Moorhead, MS-1. AQUIFER.--Surficial sand of Pleistocene Age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 8 in (0.20 m), depth 131 ft (39.9 m), slotted WELL CHARACTERISTICS.--Drilled observation waver-table well, distance of in (27.7 to 32.6 m). 91 to 107 ft (27.7 to 32.6 m). DATUM.--Land-surface datum is 916.7 ft (279.4 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder floor, 3.60 ft (1.10 m) above land-surface datum. REMARKS.--Water level affected by pumping from nearby wells. PERIOD OF RECORD. -- January 1947 to current year. EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 12.19 ft (3.72 m) below land-surface datum, July 15, 1947; lowest, 30.59 ft (9.32 m) below land-surface datum, July 23, 1980. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | DATE | WATER
LEVEL | |--------|----------------|-------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 27 | 29.23 | DEC 4 | 29.09 | FEB 23 | 29.54 | APR 16 | 29.29 | MAY 27 | 28.81 | AUG 17 | 30.52 | 465328096391001. Local number, 139N47W06AAA01. LOCATION.-Lat 46°53'27", long 96°39'08", in NE&NE&NE& sec.6, T.139 N., R.47 W., Hydrologic Unit 09020104, 2.7 mi (4.3 km) northeast of Dilworth. Owner: U.S. Geological Survey, M-80. AQUIFER.--Buried sand and gravel of Pleistocene Age. WELL CHARACTERISTICS .-- Drilled observation artesian well, diameter 3 in (0.08 m), depth 103 ft (31.4 m), casing slotted near bottom. DATUM. --Altitude of land-surface datum is 915 ft (279 m). Measuring point: Top of casing, 2.50 ft (0.76 m) above land-surface datum. REMARKS. --Water level affected by pumping. PERIOD OF RECORD. -- July 1949 to April 1966, November 1976 to current year. EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 16.94 ft (5.16 m) below land-surface datum, July 16, 1949; lowest, 28.88 ft (8.80 m) below land-surface datum, Aug. 17, 1982. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | DATE | WATER
LEVEL | |--------|----------------|-------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 27 | 28.22 | DEC 4 | 28.19 | FEB 23 | 28.14 | APR 16 | 28.43 | MAY 27 | 28.21 | AUG 17 | 28.88 | 465231096415801. Local number, 139N48W11ABA01. LOCATION.--Lat 46°52'31", long 96°41'58", in NE&NW&NE& sec.11, T.139 N., R.48 W., Hydrologic Unit 09020104, at Dilworth. Owner: City of Dilworth. AQUIFER.--Buried sand and gravel of Pleistocene Age. WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 8 in (0.20 m), depth 152 ft (46.3 m). DATUM.--Altitude of land-surface datum is 908 ft (277 m). Measuring point: Top of recorder platform, 2.40 ft (0.73 m) above land-surface datum. REMARKS .-- Water level affected by pumping. PERIOD OF RECORD.--May 1965 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 101.3 ft (30.88 m) below land-surface datum, Dec. 29, 1965; lowest, 129.1 ft (39.35 m) below land-surface datum, July 23, 1980. | DATE | WATER
LEVEL | |--------|----------------|-------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 27 | 123.4 | DEC 4 | 122.8 | FEB 23 | 122.7 | APR 16 | 122.2 | MAY 27 | 123.3 | AUG 17 | 127.9 | #### CLAY COUNTY -- Continued ### GRANT COUNTY 455254096051901. Local number, 128N43W21CBB01. LOCATION.--Lat 45°52'54", long 96°05'19", in NW\u00e4NW\u00e4SW\u00e4 sec.21, T.128 N., R.43 W., Hydrologic Unit 09020101. Owner: Edward Ellison. AQUIFER .-- Buried sand of Pleistocene Age. WELL CHARACTERISTICS. -- Drilled irrigation artesian well, diameter 6 in (0.15 m), depth 56 ft (17.1 m), screened 51 to 56 ft (15.5 to 17.1 m). DATUM. -- Altitude of land-surface datum is 1,090 ft (332 m). Measuring point: Top of casing, 1.00 ft (0.30 m) above land-surface datum. PERIOD OF RECORD. --October 1980 to current year. EXTREMES FOR PERIOD OF RECORD. --Highest water level, 13.42 ft (4.09 m) below land-surface datum, Feb. 24, 1981; lowest, 13.80 ft (4.21 m) below land-surface datum, May 26, 1981. ## WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | DATE | WATER
LEVEL | |------------------|----------------|-----------------|----------------|--------|----------------|-------|----------------|--------|----------------|--------|----------------| | OCT 22
NOV 17 | 13.62
13.59 | MAY 28
JUN 4 | 13.58
13.60 | JUN 29 | 13.61 | JUL 2 | 13.60 | AUG 25 | 13.59 | SEP 30 | 13.58 | 455932095582601. Local number, 129N42W09CCC01. LOCATION.--Lat 45°59'32", long 95°58'26", in SWłSWł sec.9, T.129 N., R.42 W., Hydrologic Unit 09020102, in Elbow Lake. Owner: City of Elbow Lake, old well 2. AQUIFER.--Buried sand and gravel of Pleistocene Age. WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 12 in (0.30 m), depth 214 ft (65.2 m), screened 200 to 220 ft (61.0 to 67.1 m). DATUM.--Altitude of land-surface datum is
1,222 ft (372 m). Measuring point: Top of platform, 1.40 ft (0.43 m) above land-surface datum. REMARKS .-- Water level affected by pumping. PERIOD OF RECORD .-- February 1964 to current year. EXTREMES FOR PERIOD OF RECORD. --Highest water level, 74.70 ft (22.77 m) below land+surface datum, Mar. 7, 1980; lowest, 80.54 ft (24.55 m) below land-surface datum, Aug. 31, 1976. | DATE | WATER
LEVEL | |------------------|----------------|------------------|----------------|------------------|----------------|------------------|----------------|------------------|----------------|--------|----------------| | OCT 31
NOV 30 | 75.20
75.10 | DEC 31
JAN 30 | 75.30
75.20 | FEB 27
MAR 31 | 75.10
75.10 | APR 30
JUN 30 | 75.50
75.58 | JUL 31
AUG 31 | 75.20
75.50 | SEP 30 | 75.40 | ## GRANT COUNTY -- Continued 460249096094301. Local number, 130N44W25BCB01. LOCATION.--Lat 46°02'49", long 96°09'43", in NW4SW4NW4 sec.25, T.130 N., R.44 W., Hydrologic Unit 09020101. Owner: Adams Bros. AQUIFER.--Buried sand of Pleistocene Age. WELL CHARACTERISTICS.--Drilled irrigation artesian well, diameter 12 in (0.30 m), depth 105 ft (32.0 m), screened 85 to 105 ft (25.9 to 32.0 m). DATUM.--Altitude of land-surface datum is 1,092 ft (333 m). Measuring point: Opening in casing, 0.20 ft (0.06 m) above land-surface datum. PERIOD OF RECORD.--June 1977 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 35.80 ft (10.91 m) below land-surface datum, June 16, 1980; lowest, 61.97 ft (18.89 m) below land-surface datum, Aug. 22, 1978. | DATE | WATER
LEVEL | |------------------|----------------|-----------------|----------------|--------|----------------|-------|----------------|--------|----------------|--------|----------------| | OCT 22
NOV 17 | 39.61
39.67 | MAY 28
JUN 4 | 39.82
39.67 | JUN 29 | 39.59 | JUL 2 | 39.55 | AUG 25 | 39.01 | SEP 30 | 38.35 | 130N44W25BCB01 ## ITASCA COUNTY 474917093144601. Local number, 062N23W35BAB01. LOCATION.--Lat 47°49'17", long 93°14'46", in NW\ne\nw\sec.35, T.62 N., R.23 W., Hydrologic Unit 09030005, at Thistledew Ranger Station. Owner: U.S. Geological Survey. AQUIFER.--Surficial sand of Pleistocene Age. WELL CHARACTERISTICS .-- Bored observation water-table well, diameter 14 in (0.03 m), depth 29 ft (8.8 m), screened 27 to 29 ft (8.2 to 8.8 m). DATUM.--Altitude of land-surface datum is 1,393 ft (425 m). Measuring point: Top of casing, 3.30 ft (1.01 m) above land-surface datum. REMARKS .-- Measured weekly by State Forestry personnel. PERIOD OF RECORD. -- September 1970 to current year. EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 17.35 ft (5.29 m) below land-surface datum, Aug. 20, 1975; lowest, 21.22 ft (6.47 m) below land-surface datum, Aug. 24, Sept. 7, 1977. # WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | DATE | WATER
LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------| | MAR 31 | 18.85 | MAY 19 | 21.10 | JUN 16 | 20.35 | JUL 14 | 20.05 | AUG 18 | 19.85 | SEP 21 | 19.95 | | APR 13 | 18.87 | 26 | 20.95 | 30 | 19.85 | 28 | 19.85 | SEP 8 | 19.85 | 29 | 19.90 | 473840093515101. Local number, 148N25W08DDD01. LOCATION.--Lat 47°38'40", long 93°51'51", in SE\sE\sE\sE\sec.8, T.148 N., R.25 W., Hydrologic Unit 09030006, at Spring Lake. Owner: U.S. Geological Survey. AQUIFER.--Surficial sand and gravel of Pleistocene Age. WELL CHARACTERISTICS .-- Bored observation water-table well, diameter 14 in (0.03 m), depth 10 ft (3.0 m), screened 8 to 10 ft (2.4 to 3.0 m). DATUM.--Altitude of land-surface datum is 1,350 ft (411 m). Measuring point: Top of casing, 3.40 ft (1.04 m) above land-surface datum. PERIOD OF RECORD .-- September 1970 to current year. EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 4.40 ft (1.34 m) below land-surface datum, July 13, 1979; lowest, 7.44 ft (2.27 m) below land-surface datum, Jan. 3, 1977. ## WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | DATE | WATER
LEVEL | |-----------------|----------------|-------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------| | NOV 4
DEC 14 | 5.30
5.41 | FEB 1 | 5.98 | MAR 30 | 5.93 | MAY 19 | 4.57 | JUL 19 | 4.95 | SEP 13 | 5.35 | 148N25W08DDD01 #### KOOCHICHING COUNTY 481148093445601. Local number, 066N27W24DAA01. LOCATION.--Lat 48°11'48", long 93°44'56", in NE\RE\SE\ sec.24, T.66 N., R.27 W., Hydrologic Unit 09030006, 2.5 mi (4.0 km) east of Big Falls. Owner: U.S. Geological Survey. AQUIFER.--Surficial sand of Pleistocene Age. WELL CHARACTERISTICS .-- Bored observation water-table well, diameter 1% in (0.03 m), depth 22 ft (6.7 m), casing perforated near bottom. DATUM.--Altitude of land-surface datum is 1,234 ft (376 m). Measuring point: Top of casing, 3.12 ft (0.95 m) above land-surface datum. PERIOD OF RECORD. -- December 1969 to current year. EXTREMES FOR PERIOD OF RECORD.—Highest water level, 14.85 ft (4.53 m) below land-surface datum, Oct. 4, 1979; lowest, 18.98 ft (5.78 m) below land-surface datum, June 13, 1977. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | DATE | WATER
LEVEL | |----------------|----------------|-----------------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 2
NOV 4 | 17.43
17.64 | DEC 14
FEB 1 | 17.70
17.97 | MAR 30 | 17.90 | MAY 19 | 17.67 | JUL 19 | 16.50 | SEP 13 | 16.89 | 481345093582801. Local number, 155N26W21DAA01. LOCATION.--Lat 48°13'45", long 93°58'28", in NE&NE&SE& sec.21, T.155 N., R.26 W., Hydrologic Unit 09030006, in Pine Island State Forest. Owner: U.S. Geological Survey. AQUIFER .-- Till of Pleistocene Age. WELL CHARACTERISTICS .-- Driven observation artesian well, diameter 1% in (0.03 m), depth 11 ft (3.4 m), screened 8 to 11 ft (2.4 to 3.4 m). DATUM.--Altitude of land-surface datum is 1,208 ft (368 m). Measuring point: Top of casing, 2.50 ft (0.76 m) above land-surface datum. REMARKS .-- Water level subject to freezing during winter periods. PERIOD OF RECORD. -- October 1973 to current year. EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 0.65 ft (0.20 m) above land-surface datum, Dec. 8, 1975; lowest, 3.97 ft (1.21 m) below land-surface datum, Feb. 7, 1977. | DATE | WATER
LEVEL | |----------------|----------------|-----------------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 2
NOV 4 | 0.30
0.47 | DEC 14
FEB 1 | 0.91
1.40 | MAR 30 | 1.25 | MAY 19 | 0.19 | JUL 19 | 0.69 | SEP 13 | 0.99 | ## KOOCHICHING COUNTY--Continued 481345093582802. Local number, 155N26W21DAA02. LOCATION.--Lat 48°13'45", long 93°58'28", in NE\ne\set sec.21, T.155 N., R.26 W., Hydrologic Unit 09030006, in Pine Island State Park. Owner: U.S. Geological Survey. AQUIFER.--Peat of Quaternary Age. WELL CHARACTERISTICS.--Bored observation water-table well, diameter 2 in (0.05 m), depth 3 ft (0.9 m), screened 0 to 3 ft (0.0 to 0.9 m). DATUM. -- Altitude of land-surface datum is 1,208 ft (368 m). Measuring point: Top of plastic casing, 2.50 ft (0.76 m) above land-surface datum. PERIOD OF RECORD.--October 1973 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 1.12 ft (0.34 m) above land-surface datum, May 19, 1982; lowest, dry below land-surface datum, Oct. 4, 1976 to Mar. 21, 1977; Aug. 25, 1980. | DATE | WATER
LEVEL | |-------|----------------|-------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 2 | 0.66 | NOV 4 | 0.62 | MAY 19 | +1.12 | JUL 19 | +0.69 | SEP 13 | +0.52 | ## LAKE OF THE WOODS COUNTY 484552095052401. Local number, 161N34W18BCC01. LOCATION.--Lat 48°45'52", long 95°05'24", in SWłSWłNWł sec.18, T.161 N., R.34 W., Hydrologic Unit 09030009, 2.4 mi (3.9 km) south of Roosevelt. Owner: U.S. Geological Survey. AQUIFER. --Surficial sand and gravel of Pleistocene Age. WELL CHARACTERISTICS. --Bored observation water-table well, diameter 11 in (0.03 m), depth 11 ft (3.4 m), screened 9 to 11 ft (2.7 to 3.4 m). DATUM.--Altitude of land-surface datum is 1,210 ft (369 m). Measuring point: Top of casing, 4.60 ft (1.40 m) above land-surface datum. PERIOD OF RECORD. -- September 1970 to current year. EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 3.76 ft (1.15 m) below land-surface datum, Apr. 27, 1978; lowest, 8.05 ft (2.45 m) below land-surface datum, Aug. 25, 1972. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | DATE | WATER
LEVEL | |-----------------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------| | NOV 2
DEC 14 | 4.52
4.53 | JAN 25 | 4.65 | MAR 22 | 6.17 | MAY 25 | 5.57 | JUL 15 | 3.96 | AUG 30 | 4.13 | ## MAHNOMEN COUNTY 471653096020301. Local number, 144N42W20BBA01. LOCATION.--Lat 47°16'53", long 96°02'03", in NEANWANWA sec.20, T.144 N., R.42 W., Hydrologic Unit 09020108, about 3 m1 (4.8 km) southwest of Mahnomen. Owner: Tom Wendt. AQUIFER. -- Buried sand of Pleistocene Age. WELL CHARACTERISTICS. -- Drilled unused artesian well, diameter 4 in (0.10 m), depth 130 ft (39.6 m). DATUM. -- Altitude of land-surface datum is 1,197 ft (365 m). Measuring point: Top of casing, 1.60 ft (0.49 m) above land-surface datum. PERIOD OF RECORD. -- August 1964 to September 1969, August 1979 to current year. EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 45.43 ft (13.85 m) below land-surface datum, May 18, 1966; lowest, 47.81 ft (14.57 m) below land-surface datum, Sept. 16, 1981. | DATE | WATER
LEVEL | |-----------------|----------------|--------|----------------|--------|----------------|-------|----------------|-------|----------------
--------|----------------| | OCT 27
DEC 8 | 47.20
47.47 | JAN 20 | 47.48 | MAR 17 | 47.09 | MAY 5 | 46.45 | JUL 6 | 46.74 | AUG 26 | 47.32 | #### MARSHALL COUNTY 481604096391501. Local number, 155N47W11AAA03. LOCATION.--Lat 48°16'04", long 96°39'15", in NE\NE\NE\ sec.11, T.155 N., R.47 W., Hydrologic Unit 09020309, 6.5 mi (10.5 km) northeast of Warren. Owner: U.S. Geological Survey. AQUIFER.--Buried sand and gravel of Pleistocene Age. WELL CHARACTERISTICS .-- Drilled observation artesian well, diameter 6 in (0.15 m), depth 86 ft (26.2 m), screened 83 to 86 ft (25.3 to 26.2 m). DATUM .-- Altitude of land-surface datum is 905 ft (276 m). Measuring point: Wood floor of instrument shelter, 3.10 ft (0.94 m) above land-surface datum. REMARKS. -- Water level affected by pumping from nearby city well. Water-level hydrograph for this well is in the introduction to this volume. PERIOD OF RECORD. -- October 1956 to current year. EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 5.83 ft (1.78 m) below land-surface datum, Feb. 26, 1958; lowest, 34.62 ft (10.55 m) below land-surface datum, Sept. 24, 1981. # WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | DATE | WATER
LEVEL | |-----------------|------------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------|-------|----------------| | NOV 4
DEC 16 | s27.11
s24.80 | JAN 27 | 19.77 | MAR 27 | 18.87 | MAY 27 | 18.60 | JUL 21 | 18.76 | SEP 1 | 18.58 | s Nearby well being pumped. 482048096481901. Local number, 156N48W10DAA02. LOCATION.--Lat 48°20'48", long 96°48'19", in NELNELSEL sec.10, T.156 N., R.48 W., Hydrologic Unit 09020309, northeast of Argyle. Owner: U.S. Geological Survey. AQUIFER . -- Surficial sand and gravel of Pleistocene Age. WELL CHARACTERISTICS .-- Bored observation water-table well, diameter 1% in (0.03 m), depth 26 ft (7.9 m), screened 24 to 26 ft (7.3 to 7.9 m). DATUM.--Altitude of land-surface datum is 851 ft (259 m). Measuring point: Top of casing, 4.00 ft (1.22 m) above land-surface datum. REMARKS.--Water level affected by pumping. PERIOD OF RECORD.--September 1963 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 3.55 ft (1.08 m) below land-surface datum, June 19, 1979; lowest, 11.53 ft (3.51 m) below land-surface datum, Mar. 9, 1977. | DATE | WATER
LEVEL | |-----------------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------|-------|----------------| | NOV 4
DEC 16 | 6.02
6.10 | JAN 27 | 6.69 | MAR 23 | 6.90 | MAY 27 | 4.47 | JUL 21 | 3.99 | SEP 1 | 5.14 | ## MARSHALL COUNTY--Continued 482354096501001. Local number, 157N48W27BAA01. LOCATION.--Lat 48°23'54", long 96°50'10", in NE4NE4NW4 sec.27, T.157 N., R.48 W., Hydrologic Unit 09020311, 4.3 mi (6.9 km) north of Argyle. Owner: U.S. Geological Survey. AQUIFER .-- Buried sand of Pleistocene Age. WELL CHARACTERISTICS.--Bored observation artesian well, diameter 1% in (0.03 m), depth 24 ft (7.3 m), screened 22 to 24 ft (6.7 to 7.3 m). DATUM.--Altitude of land-surface datum is 844 ft (257 m). Measuring point: Top of casing, 3.00 ft (0.91 m) above land-surface datum. PERIOD OF RECORD .-- October 1971 to current year. EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 1.88 ft (0.57 m) below land-surface datum, July 29, 1975; lowest, 6.65 ft (2.03 m) below land-surface datum, May 27, 1982. ## WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | DATE | WATER
LEVEL | |-------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------|-------|----------------| | NOV 4 | 5.20 | DEC 16 | 5.09 | MAR 23 | 5.52 | MAY 27 | 6.65 | JUL 21 | 4.85 | SEP 1 | 4.98 | ## OTTER TAIL COUNTY 462538095530201. Local number, 134N41W08CCC01. LOCATION.--46025'38", long 95053'02", in SW&SW&SW&SSW&SEC.8, T.134 N., R.41 W., Hydrologic Unit 09020103, 0.9 mi (1.4 km) west of County Roads 35 and 22. Owner: U.S. Geological Survey. AQUIFER .-- Surficial sand and Pleistocene Age. WELL CHARACTERISTICS .-- Bored observation water-table well, diameter 2 in (0.05 m), depth 43 ft (13.1 m), screened 40 to 43 ft (12.2 to 13.1 m). DATUM.--Altitude of land-surface datum is 1,368 ft (417 m). Measuring point: Top of casing, 1.70 ft (0.52 m) above land-surface datum. PERIOD OF RECORD .-- November 1967 to current year. EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 25.31 ft (7.71 m) below land-surface datum, June 1, 1974; lowest, 28.73 ft (8.76 m) below land-surface datum, Mar. 15, 1982. # WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | DATE | WATER
LEVEL | |------------------|----------------|------------------|----------------|------------------|----------------|------------------|----------------|------------------|----------------|--------|----------------| | OCT 15
NOV 12 | 28.28
28.33 | DEC 16
JAN 12 | 28.47
28.57 | FEB 12
MAR 15 | 28.69
28.73 | APR 13
JUN 16 | 27.49
27.30 | JUL 14
AUG 17 | 27.30
27.54 | SEP 14 | 27.69 | 462522096031901. Local number, 134N43W14ADB01. LOCATION.--Lat 46°25'22", long 96°03'19", in NW&SE&NE& sec.14, T.134 N., R.43 W., Hydrologic Unit 09020103, on Ron Heikes farm. Owner: U.S. Geological Survey. AQUIFER.--Surficial sand and gravel of Pleistocene Age. WELL CHARACTERISTICS.--Bored observation water-table well, diameter 1% in (0.03 m), depth 50 ft (15.2 m), screened 48 to 50 ft (14.6 to 15.2 m). DATUM.--Altitude of land-surface datum is 1,280 ft (390 m). Measuring point: Top of casing, 2.00 ft (0.61 m) above land-surface datum. PERIOD OF RECORD .-- November 1977 to current year. EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 24.04 ft (7.33 m) below land-surface datum, May 2, 1980; lowest, 26.52 ft (8.08 m) below land-surface datum, Jan. 2, 1981. | DATE | WATER
LEVEL | |--------|----------------|--------|----------------|--------|----------------|-------|----------------|-------|----------------|--------|----------------| | MAR 21 | 26.18 | APR 26 | 25.13 | MAY 29 | 25.22 | JUL 3 | 25.63 | AUG 7 | 26.13 | SEP 11 | 26.48 | ## OTTER TAIL COUNTY -- Continued 463418095334201. Local number, 136N39W23DCC01. LOCATION.--Lat 46°34'18", long 95°33'42", in SW&SW&SE& sec.23, T.136 N., R.39 W., Hydrologic Unit 09020103, at Perham dump. Owner: U.S. Geological Survey. AQUIFER.--Surficial sand and gravel of Pleistocene Age. WELL CHARACTERISTICS.--Bored observation water-table well, diameter 1; in (0.03 m), depth 26 ft (7.9 m), screened 24 to 26 ft (7.3 to 7.9 m). DATUM.--Altitude of land-surface datum is 1,350 ft (411 m). Measuring point: Top of casing, 1.00 ft (0.30 m) above land-surface datum. PERIOD OF RECORD.--November 1967 to current year. EXTREMES FOR PERIOD OF RECORD.—Highest water level, 9.90 ft (3.02 m) below land-surface datum, Aug. 10, 1972; lowest, 16.67 ft (5.08 m) below land-surface datum, Feb. 9, 1977. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | DATE | WATER
LEVEL | |-----------------|----------------|--------|----------------|--------|----------------|-------|----------------|-------|----------------|--------|----------------| | OCT 26
DEC 9 | 15.79
15.43 | JAN 20 | 16.22 | MAR 18 | 16.03 | MAY 6 | 14.82 | JUL 6 | 14.56 | AUG 26 | 15.07 | 463650096042801. Local number, 136N43W10AAA01. LOCATION.--Lat 46°36'50", long 96°04'28", in NEANEANEA sec.10, T.136 N., R.43 W., Hydrologic Unit 09020103, on Oliver Haugrud farm. Owner: U.S. Geological Survey. AQUIFER.--Surficial sand and gravel of Pleistocene Age. WELL CHARACTERISTICS. -- Bored observation water-table well, diameter 1% in (0.03 m), depth 22 ft (6.7 m), screened 20 to 22 ft (6.1 to 6.7 m). DATUM.--Altitude of land-surface datum is 1,322 ft (403 m). Measuring point: Top of casing, 2.00 ft (0.61 m) above land-surface datum. PERIOD OF RECORD. -- July 1977 to current year. EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 6.89 ft (2.10 m) below land-surface datum, Apr. 16, 1980; lowest, 8.67 ft (2.64 m) below land-surface datum, Dec. 1, 1980, Sept. 11, 1982. | DATE | WATER
LEVEL | |--------|----------------|--------|----------------|--------|----------------|-------|----------------|-------|----------------|--------|----------------| | MAR 21 | 8.26 | APR 26 | 7.86 | MAY 29 | 8.00 | JUL 3 | 8.16 | AUG 7 | 8.41 | SEP 11 | 8.67 | ## OTTER TAIL COUNTY -- Continued 463430096050201. Local number, 136N43W22CDA02. LOCATION.--Lat 46°34'30", long 96°05'02", in NE&SE&SW& sec.22, T.136 N., R.43 W., Hydrologic Unit 09020103, at Pelican Rapids. Owner: City of Pelican Rapids, well 2. AQUIFER.--Buried sand and gravel of Pleistocene Age. WELL CHARACTERISTICS .-- Drilled unused artesian well, diameter 10 in (0.25 m), depth 113 ft (34.4 m), screened 87 to 113 ft (26.5 to 34.4 m). DATUM.--Land-surface datum is 1,354 ft (412.8 m) National Geodetic Vertical Datum of 1929. Measuring point: Bottom lip of access pipe, 2.30 ft (0.70 m) above land-surface datum. PERIOD OF RECORD.--March 1965 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 46.97 ft (14.32 m) below land-surface datum, June 20, 1979; lowest, 55.33 ft (16.86 m) below land-surface datum, Oct. 13, 1970. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | DATE | WATER
LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------| | DEC 17 | 49.51 | FEB 24 | 49.57 | MAY 28 | 50.40 | AUG 17 | 48.59 | AUG 25 | 48.60 | 463956095352601. Local number, 137N39W22ACD01. LOCATION.--Lat 46°39'56", long 95°35'26", in SE&SW&NE& sec.22, T.137 N., R.39 W., Hydrologic Unit 09020103, 4.5 mi (7.2 km) north of Perham. Owner: U.S. Geological Survey. AQUIFER.--Surficial sand of Pleistocene Age. WELL CHARACTERISTICS .-- Bored observation water-table
well, diameter 2 in (0.10 m), depth 24 ft (7.3 m), screened 21 to 24 ft (6.4 to 7.3 m). DATUM.--Altitude of land-surface datum is 1,370 ft (418 m). Measuring point: Top of casing, 0.50 ft (0.15 m) above land-surface datum. PERIOD OF RECORD .-- December 1967 to current year. EXTREMES FOR PERIOD OF RECORD.—Highest water level, 7.29 ft (2.22 m) below land-surface datum, July 15, 1975; lowest, 11.41 ft (3.48 m) below land-surface datum, Mar. 10, 15, 1977. WATER LEVEL, IN FEET ABOVE LAND-SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-----|-------|-------|-------|-------|-------|-------|-----------|------|-----------|------|------|------| | 5 | 10.39 | 10.20 | 10.23 | 10.24 | 10.46 | 10.53 | 9.55 | 9.09 | • • • • • | 8.90 | 9.11 | 9.50 | | 10 | 10.36 | 10.20 | 10.17 | 10.26 | 10.48 | 10.54 | | | | 8.91 | 9.13 | 9.52 | | 15 | 10.34 | 10.21 | 10.18 | 10.28 | 10.49 | 10.54 | | | | 8.95 | 9.15 | 9.50 | | 20 | 10.31 | 10.21 | 10.20 | 10.43 | 10.50 | 10.55 | | | | 8.99 | | 9.49 | | 25 | 10.31 | 10.21 | 10.22 | 10.44 | 10.51 | 10.55 | | | | 9.02 | 9.47 | 9.53 | | EOM | 10.20 | 10.21 | 10.23 | 10.45 | 10.52 | 10.55 | • • • • • | | 8.90 | 9.06 | 9.48 | 9.54 | WTR YEAR 1982 HIGHEST 8.90 JUN 30-JUL 5, 1982 LOWEST 10.55 MAR 20-31, 1982 # PENNINGTON COUNTY 480707096103501. Local number, 154N43W33ADA01. LOCATION.--Lat 48007'07", long 96010'35", in NE&SE&NE& sec.33, T.154 N., R.43 W., Hydrologic Unit 09020303, in Thief River Falls. Owner: Land O'Lakes Hatchery. AQUIFER .-- Buried sand of Pleistocene Age. WELL CHARACTERISTICS. -- Drilled unused artesian well, diameter 3 in (0.08 m), depth 124 ft (37.8 m). DATUM. -- Altitude of land-surface datum is 1,127 ft (344 m). Measuring point: Top of casing, 6.40 ft (1.95 m) below land-surface datum. PERIOD OF RECORD. -- February 1965 to September 1969, August 1979 to current year. EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 34.40 ft (10.49 m) below land-surface datum, Feb. 21, 1967; lowest, 39.16 ft (11.94 m) below land-surface datum, Oct. 7, 1980. | DATE | WATER
LEVEL | |-------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------|-------|----------------| | NOV 4 | 37.79
37.84 | JAN 28 | 37.38 | MAR 23 | 36.49 | MAY 27 | 36.74 | JUL 20 | 36.93 | SEP 1 | 37.05 | ## PENNINGTON COUNTY--Continued ## ST. LOUIS COUNTY 472638092533601. Local number, 057N20W05DAD01. LOCATION.--Lat 47°26'38", long 92°53'36", in SEANEASEA sec.5, T.57 N., R.20 W., Hydrologic Unit 04010201, 2.5 mi (4.0 km) east of Hibbing. Owner: Burlington Northern, Inc. AQUIFER. -- Biwabik Iron Formation of Middle Precambrian Age. WELL CHARACTERISTICS .-- Drilled unused artesian well, diameter 12 in (0.30 m), depth 430 ft (131 m), cased to 315 ft (96.0 m). DATUM. -- Altitude of land-surface datum is 1,470 ft (448 m). Measuring point: Top of platform, 1.20 ft (0.37 m) above land-surface datum. EXTREMES FOR PERIOD OF RECORD. --Highest water level, 55.29 ft (16.85 m) below land-surface datum, Sept. 22, 1972; lowest, 69.07 ft (21.05 m) below land-surface datum, Jan. 15, 1965. # WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | DATE | WATER
LEVEL | |------------------|----------------|-------|----------------|-------|----------------|--------|----------------|--------|----------------|-------|----------------| | OCT 13
NOV 30 | 58.08
57.37 | JAN 7 | 57.40 | MAR 1 | 57.60 | APR 20 | 58.18 | JUN 24 | 57.97 | AUG 2 | 57.29 | 472230092561001. Local number, 057N20W31DBC01. LOCATION.--Lat 47°22'30", long 92°56'10", in SW\{\}NW\{\}SE\{\} sec.31, T.57 N., R.20 W., Hydrologic Unit 04010201, 1.4 mi (2.25 km) south of Hibbing. Owner: Mesaba County Club. Owner: mesana county Club. AQUITER:.-Buried sand and gravel of Pleistocene Age. WELL CHARACTERISTICS.--Drilled unused artesian and water-table well, diameter 18 in (0.46 m), depth 92 ft (28.0 m), screened 82 to 92 ft (25.0 to 28.0 m). DATUM.--Altitude of land-surface datum is 1,391 ft (424 m). Measuring point: Hole east side of pump base, 3.00 ft (0.91 m) above land-surface datum. REMARKS. -- Water level affected by pumping. PERIOD OF RECORD. -- February 1958 to March 1965, July 1979 to current year. EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 5.85 ft (1.78 m) below land-surface datum, May 23, 1962; lowest, 15.05 ft (3.56 m) below land-surface datum, June 30, 1980. | DATE | WATER
LEVEL | DATE | WATER
LEVEL | DATE | WATER
LEVEL | |--------|----------------|-------|----------------|--------|----------------| | OCT 16 | 7.02 | DEC 2 | 7.49 | APR 20 | 7.65 | # ST. LOUIS COUNTY -- Continued 473102092345001. Local number, 058N18W12CCC01. LOCATION.--Lat 47°31'02", long 92°34'50", in SW&SW&SW&SW&SW&SW. R.18 W., Hydrologic Unit 04010201, 1 mi (1.6 km) west of Virginia. Owner: U.S. Steel Corp. AQUIFER.--Buried sand and gravel of Pleistocene Age. WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 6 in (0.15 m), depth 97 ft (29.6 m), slotted casing between 67 to 97 ft (20.4 to 29.6 m). DATUM.--Land-surface datum is 1,427.5 ft (435.1 m) National Geodetic Vertical Datum of 1929. Measuring point: Edge of vent pipe, 1.90 ft (0.58 m) above land-surface datum. PERIOD OF RECORD. -- December 1954 to July 1964, July 1979 to current year. EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 10.64 ft (3.24 m) below land-surface datum, July 20, 1957; lowest, 17.47 ft (5.32 m) below land-surface datum, Apr. 2, 1964. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | DATE | WATER
LEVEL | |--------|----------------|-------|----------------|-------|----------------|--------|----------------|--------|----------------|-------|----------------| | OCT 13 | 12.55 | JAN 6 | 13.42 | MAR 3 | 14.31 | APR 19 | 12.22 | JUN 18 | 12.16 | AUG 3 | 11.93 | 473011092524301. Local number, 058N20W16DBC01. LOCATION.--Lat 47°30'11", long 92°52'43", in SWtNWtSEt sec.16, T.58 N., R.20 W., Hydrologic Unit 04010201, in Chisholm. City of Chisholm. AQUIFER. -- Buried sand and gravel of Pleistocene Age. WELL CHARACTERISTICS. -- Drilled unused artesian well, diameter 12 in (0.30 m), depth 40 ft (12.2 m), screened 30 to 40 ft (9.1 to 12.2 m). DATUM.--Altitude of land-surface datum is 1,500 ft (457 m). Measuring point: Top of wood platform, 1.70 ft (0.52 m) above land-surface datum. REMARKS.--Water level affected by pumping. Water-level subject to freezing during winter months. PERIOD OF RECORD.--August 1953 to current year. EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 0.23 ft (0.07 m) below land-surface datum, May 10, 1954; lowest, 15.60 ft (4.75 m) below land-surface datum, Mar. 23-24, 1957. | | WATER | | WATER | | WATER | | WATER | |--------|-------|--------|-------|--------|-------|-------|-------| | DATE | LEVEL | DATE | LEVEL | DATE | LEVEL | DATE | LEVEL | | OCT 13 | 2,60 | NOV 30 | 2.76 | JUN 24 | 2.33 | AUG 2 | 1.21 | ## ST. LOUIS COUNTY--Continued 474253091574101. Local number, 060N13W01BBA01. LOCATION.--Lat 47°42'53", long 91°57'41", in NE\hat{NW\hat{h}}N\hat{h} sec.1, T.60 N., R.13 W., Hydrologic Unit 09030001, at Babbitt water tower. U.S. Geological Survey. Owher: U.S. Geological Survey. AQUIFER.--Surficial sand and gravel of Pleistocene Age. WELL CHARACTERISTICS.--Bored observation water-table well, diameter 2 in (0.05 m), depth 30 ft (9.1 m), screened 27 to 30 ft (8.2 to 9.1 m). DATUM.--Altitude of land-surface datum is 1,485 ft (453 m). Measuring point: Top of 3 in (0.08 m) pipe, 4.00 ft (1.22 m) above land-surface datum. PERIOD OF RECORD. --October 1975 to June 1978, July 1979 to current year. EXTREMES FOR PERIOD OF RECORD. --Highest water level, 20.70 ft (6.31 m) below land-surface datum, Oct. 6, 1975; lowest, 26.03 ft (7.93 m) below land-surface datum, June 14, 1977. ## WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | DATE | WA'I'ER
LEVEL | DATE | WATER
LEVEL | |----------------|------------------|-------|----------------|-------|----------------|-------|----------------|-------|----------------|-------|----------------| | OCT 1
APR 1 | 21.20 | MAY 1 | 22.97 | JUN 1 | 22.58 | JUL 2 | 22.17 | AUG 1 | 22.00 | SEP 1 | 21.66 | WELL CHARACTERISTICS.—Bored observation water-table well, diameter 14 in (0.03 m), depth 9 ft (2.7 m), screened 7 to 9 ft (2.1 to 2.7 m). DATUM.—Altitude of land-surface datum is 1,342 ft (409 m). Measuring point: Top of casing, 4.00 ft (1.22 m) above land-surface datum. PERIOD OF RECORD. -- October 1970 to current year. EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 1.68 ft (0.51 m) below land-surface datum, Apr. 20, 1982; lowest, 6.87 ft (2.09 m) below land-surface datum, Sept. 27, 1976. | DATE | WATER
LEVEL | DATE | WATER
LEVEL | DATE | WATER
LEVEL | DATE | WATER
LEVEL | WATER DATE LEVEL | DATE | WATER
LEVEL | |-----------------|----------------|-------|----------------|-------|----------------|--------|----------------|--------------------|-------|----------------| | OCT 14
DEC 1 | 4.18
4.12 | JAN 5 | 4.91 | MAR 3 | 5.29 | APR 20 | 1.68 | JUN 22 3.71 | AUG 3 | 4.12 | #### TRAVERSE COUNTY 455700096314001. Local number, 129N47W25CDC01. LOCATION.--Lat 45°57'00", long 93°31'40", in SW&SE&SW& sec.25, T.129 N., R.47 W., Hydrologic Unit 09020101, 9 mi (14.5 km) north of Wheaton. U.S. Geological Survey. Owner: AQUIFER .-- Surficial sand of Pleistocene Age. WELL CHARACTERISTICS. -- Bored observation water-table well, diameter 14 in (0.03 m), depth 39 ft (11.9 m), open end. DATUM. -- Altitude of land-surface datum is 1,010 ft (308 m). Measuring point: Top of casing, 2.00 ft (0.61 m) above land-surface datum. PERIOD OF RECORD. -- October 1965 to current year. EXTREMES FOR PERIOD OF RECORD .-- Highest water level, 7.05 ft (2.15 m) below land-surface datum, July 14, 1978; lowest, 12.36 ft (3.77 m) below land-surface datum, Oct. 18, 1974
WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | DATE | WATER
LEVEL | |------------------|----------------|--------|----------------|-------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 27
NOV 24 | 11.98
12.03 | JAN 18 | 12.22 | APR 8 | 11.07 | JUN 24 | 11.42 | AUG 17 | 11.97 | SEP 21 | 12.07 | ## WILKIN COUNTY 460422096193701. Local number, 130N45W15BCC01. LOCATION.--Lat 46°04'22", long 96°19'37", in SWASWANWA sec.15, T.130 N., R.45 W., Hydrologic Unit 09020101, 2 mi (3.5 km) north of Nashua. Owner: Earl Davison AQUIFER. -- Buried sand of Pleistocene Age. WELL CHARACTERISTICS .-- Drilled irrigation artesian well, diameter 16 in (0.41 m), depth 226 ft (68.9 m), screened 181 to 226 ft (55.2 to 68.9 m). DATUM.--Altitude of land-surface datum is 994 ft (303 m). Measuring point: Top of casing, 1.00 ft (0.30 m) above land-surface datum. PERIOD OF RECORD. -- October 1980 to current year. EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 5.67 ft (1.73 m) below land-surface datum, Apr. 15, 1981; lowest, 6.09 ft (1.86 m) below land-surface datum, Oct. 24, 1980. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | DATE | WATER
LEVEL | |------------------|----------------|-----------------|----------------|--------|----------------|-------|----------------|--------|----------------|--------|----------------| | OCT 22
NOV 17 | 5.83
5.98 | MAY 28
JUN 4 | 5.86
5.79 | JUN 29 | 5.73 | JUL 2 | 5.69 | AUG 25 | 5.70 | SEP 30 | 5.68 | 463422096341701. Local number, 136N47W23CCC01. LOCATION.--Lat 46°34'22", long 96°34'17", in SW\(\frac{1}{2}\)SW\(\frac{1}\)SW\(\frac{1}{2}\)SW\(\frac{1}{2}\)SW\(\frac{1}{2}\)SW\(\frac{1}\)SW\(\frac{1}{2}\)SW\(\frac{1}{2}\)SW\(\frac{1}{2}\)SW\(\frac{1}{2}\)SW\(\frac{1}{2}\)SW\(\frac{1}{2}\)SW\(\frac{1}{2}\)SW\(\ AQUIFER .-- Surficial sand of Pleistocene Age. WELL CHARACTERISTICS .-- Bored observation water-table well, diameter 1th in (0.03 m), depth 62 ft (18.9 m), screened 58 to 62 ft (17.7 to 18.9 m). DATUM.--Land-surface datum is 953.9 ft (290.8 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.00 ft (0.61 m) above land-surface datum. PERIOD OF RECORD.--October 1965 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 2.61 ft (0.80 m) below land-surface datum, Mar. 21, 1966; lowest, 9.42 ft (2.87 m) below land-surface datum, Feb. 16, 1977. | DATE | WATER
LEVEL | |--------|----------------|-------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 27 | 7.43 | DEC 4 | 7.74 | FEB 23 | 8.44 | APR 16 | 6.21 | MAY 27 | 5.85 | AUG 17 | 6.77 | # QUALITY OF GROUND WATER # WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | STATION NUMBER | LOCAL
IDENT-
I-
FIER | GEO-
LOGIC
UNIT | DATE
OF
SAMPLE | TIME | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS)
(00095) | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(UMHOS)
(90095) | PH
(UNITS)
(00400) | PH
LAB
(UNITS)
(00403) | TEMPER-ATURE (DEG C) (00010) | |--|-------------------------------|--|--|------------------------------|--|---|--------------------------|---------------------------------|-----------------------------------| | | | | OTTER TAIL | | | | | | | | 462100095414501 133N40
462715095323001 134N39 | 0W01ACD02 | 1120TSH
1120TSH
1120TSH
1120TSH | 81-12-03
82-06-07
81-12-03
82-06-07 | 1230
1330
1130
1300 | 360
375
500
480 | 392
402
479
498 | 6.8
8.0
6.6
7.6 | 7.9
7.9
7.5
7.6 | 12.0
12.0
9.0
9.5
8.5 | | 463245095331501 136N39 | | 1120TSH | 82-06-07 | 1230 | 550 | 584 | 7.7 | 7.8 | | | 463500095331501 136N3 | 3W1 4DDDQ1 | 1120TSH
1120TSH | 81-12-03
82-06-07 | 1030
1200 | 465
5 00 | 51 7
531 | 8.0
8.0 | 7•9
7•9 | 9.0
9.0 | | | | | ST LOUIS | | | | | | | | 472217093033502 056N2 | WO6BBA02 KTB-26 | 111HLCN | 82-08-24 | 1320 | 715 | 722 | 8.0 | 7.8 | 8.0 | | DATE
OF
SAMPLE | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | | | |--|---|--|--|---|--|--| | | OTTE | ER TAIL | | | | | | 81-12-03
82-06-07
81-12-03
82-06-07
82-06-07 | 55
58
74
80
83 | 2.1
2.8
9.1
9.9
3.3 | 3.7
4.2
.05
<.10
5.2 | 40
10
7100
7600
20 | | | | 81-12-03
82-06-07 | 68
71 | 12
12 | 11
13 | 40
60 | | | | ST LOUIS | | | | | | | | 82-08-24 | 27 | 16 | 5.5 | 12 | | | # QUALITY OF GROUND WATER # WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 | STATION | NUMBER | | LOCAL
IDENT-
I-
FIER | | GEO-
LOGIC
UNIT | DATE
OF
SAMPLE | TIME | HARD-
NESS
(MG/L
AS
CACO3)
(00900) | HARD-
NESS
NONCAR-
BONATE
(MG/L
AS
CACO3)
(95902) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM AD- SORP- TION RATIO (00931) | |----------------------|---|--|---|--|---|--|--|--|--|--|--|--| | | | | | | | ST LOUIS | | | | | | | | 47221709 | 3033502 0 | 956N21W06E | BBA02 KTB- | -26 | 111HLCN | 82-08-24 | 1320 | 280 | 19 | 51 | 38 | 1.2 | | DATE
OF
SAMPLE | ALKA-
LINITY
LAB
(Mg/L
AS
CACO3)
(90410) | SULFATE
DIS-
SOLVED
(Mg/L
AS SO4)
(00945) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
O SOLVED
(MG/L)
(70301) | SOLIDS,
VOLA-
TILE,
DIS-
SOLVED
(MG/L)
(00520) | NITRO-
GEN,
NO 2+NO3
TOTAL
(MG/L
AS N)
(00630) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N)
(00610) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHOS-
PHORUS,
ORTHO,
TOTAL
(MG/L
AS P)
(70507) | BARIUM,
DIS-
SOLVED
(Uq/L
AS BA)
(01005) | | 82-08-24 | 259 | 88 | 1.4 | 20 | 438 | 422 | 99 | | | | | 48 | | DATE
OF
SAMPLE | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE)
(01010) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | COBALT,
DIS-
SOLVED
(UG/L
AS CO)
(01035) | COPPER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | LITHIUM DIS- SOLVED (UG/L AS LI) (01130) ST LOUIS | MANG A-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO)
(01060)
| STRON-
TIUM,
DIS-
SOLVED
(UG/L
AS SR)
(01080) | VANA-
DIUM,
DIS-
SOLVED
(UG/L
AS V)
(01085) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN)
(01090) | CARBON,
ORGANIC
TOTAL
(MG/L
AS C)
(00680) | | 82-08-24 | <1 | <1 | <3 | <10 | <10 | 10 | 300 | 140 | 110 | <6.0 | . <4 | •2 | DATE OF SAMPLE PHENOLS (UG/L) (32730) ST LOUIS 82-08-24 2 INDEX | | Do are | | D | |---|--|---|--| | Accuracy of field data and computed results | Page
16 | Cruiser Lake near International Falls | Page
163-164 | | Acre-foot, definition of | 2 | Cubic feet per second, definition of | 8 | | Ada, Wild Rice River near | 137 | Cubic feet per second per square mile, | | | Adenosine Triphosphate, definition of | 2
2 | definition of | 8 | | Algal growth potential, definition of | 3 | Data, accuracy of | 16 | | Analyses of samples collected at water- | , | ground-water level records, explanation of | 17 | | | 138-174 | other available | 16 | | Angule Middle River at | 86,178 | surface-water records, collection and | - h | | Argyle, Middle River at | 30,173 | computation of | 14 | | Artificial substrate, definition of | ıĭ | examination of | 16 | | Ash mass, definition of | 3 | Deer Creek near Holyoke | 50,176 | | Ash River at Ash River Falls near Ray | 142
143 | Definition of terms | 5 | | above mouth of Cannon Creek near Ray at entrance to Sullivan Bay near Ray | 145-146 | Diatoms, definition of | 10
63,177 | | below mouth of Cannon Creek near Ray | 144 | Discharge at, partial-record stations, and | • 5 , - , , | | Aurora, Partridge River near | 40,175 | miscellaneous sites | 132-137 | | St. Louis River near | 41,175 | High-flow partial-record stations | 132-136 | | Bacteria, definition of | 3 | Miscellaneous sites Discharge, definition of | 137
8 | | Bagley, Mosquito Creek near | 134 | Discontinued gaging stations | 23-26 | | Baptism River near Beaver Bay28 | | Dissolved, definition of | 8 | | Barnesville, Whiskey Creek at | 134
107,179 | Diversity index, definition of | 8
134 | | | 125,180 | Downer, Spring Creek above | 134 | | Beaver Bay, Baptism River near28 | | definition of | 12 | | Bed material, definition of | 3 | Drainage area, definition of | 8 | | Bigfork, Big Fork River near | 136
136 | Drainage basin, definition of | 87-88 | | Big Fork River at Big Falls | 136 | Drayton, ND, Red River of the North at Dry mass, definition of | 3 | | near Bigfork | 136 | Duluth, Miller Creek at | 132 | | Biochemical oxygen demand, definition of | 3
3 | Talmadge River at | 132 | | Biomass, definition of | 135 | Eighteenmile Creek near Wheaton | 133 | | Blackhoof, Rock Creek near | 133 | Ely, Filson Creek near | 105,179 | | Rock Creek tributary near | 133 | Kawishiwi River near | | | Blue-green algae, definition of | 10
53,176 | Emerson, Manitoba, Red River of the North at | 89-91 | | Bois de Sioux River near White Rock, SD Boriin Creek near Chisholm | 136 | Encampment River tributary at Silver Creek Explanation of ground-water level records | 132
17 | | Borup, South Branch Wild Rice River near | 134 | of stage and water-discharge records | 14 | | Bottom material, definition of | 3 | of water-quality records | 16 | | Bowerman Brook near Craigville | 136
134 | Destant for conventing Inch Bound Units | | | near Dilworth | 63,177 | Factors for converting Inch-Pound Units to International System (SI) | | | near Hawley | 61,176 | UnitsInside ba | ck cover | | South Branch, at Sabin | 62,176
133 | Fairbanks, North Branch Whiteface River near | 133 | | Bulldog Run near Warroad | 136 | Fargo, ND, Red River of the North at Red River of the North below | 58-59 | | · · | _ | | 60 | | | | Fecal coliform bacteria, definition of | 60
3 | | Callaway, Buffalo River near | 134 | Fecal coliform bacteria, definition of | 3
3 | | Caribou, Roseau River below State ditch 51, | | Fecal coliform bacteria, definition of | 3
3
51 | | | | Fecal coliform bacteria, definition of Fecal streptococci bacteria, definition of Fergus Falls, Orwell Lake near Otter Tail River below Orwell Dam, near | 3
3
51
52,176 | | Caribou, Roseau River below State ditch 51, near96-Carlbou River near Little Marais | -102,179
132
3 | Fecal coliform bacteria, definition of | 3
3
51 | | Caribou, Roseau River below State ditch 51, near96- Caribou River near Little Marais Cells/volume, definition of Cfs-day, definition of | -102,179
132
3
3 | Fecal coliform bacteria, definition of Fecal streptococci bacteria, definition of Fergus Falls, Orwell Lake near Otter Tail River below Orwell Dam, near Filson Creek near Ely Floodwood, Floodwood River above Floodwood River above Floodwood | 3
3
51
52,176
105,179
133
133 | | Caribou, Roseau River below State ditch 51, near | -102,179
132
3
3 | Fecal coliform bacteria, definition of Fecal streptococci bacteria, definition of Fergus Falls, Orwell Lake near Otter Tail River below Orwell Dam, near Filson Creek near Ely Floodwood, Floodwood River above Floodwood River above Floodwood. Forbes, St. Louis River at | 3
3
51
52,176
105,179
133
133
42,176 | | Caribou, Roseau River below State ditch 51, near | -102,179
132
3
3
3
136 | Fecal coliform bacteria, definition of Fecal streptococci bacteria, definition of Fergus Falls, Orwell Lake near Otter Tail River below Orwell Dam, near Filson Creek near Ely Floodwood, Floodwood River above Floodwood River above Floodwood | 3
3
51
52,176
105,179
133
133 | | Caribou, Roseau River below State ditch 51, near | -102,179
132
3
3
3
136
112,180 | Fecal coliform bacteria, definition of Fecal streptococci bacteria, definition of Fergus Falls, Orwell Lake near Otter Tail River below Orwell Dam, near Filson Creek near Ely Floodwood, Floodwood River above Floodwood River above Floodwood Forbes, St. Louis River at Fort Frances, Ontario, Rainy Lake near Gage height, definition of | 3
3
51
52,176
105,179
133
133
42,176
111 | | Caribou, Roseau River below State ditch 51, near | -102,179
132
3
3
3
136
112,180
8
135 | Fecal coliform bacteria, definition of Fecal streptococci bacteria, definition of Fergus Falls, Orwell Lake near Otter Tail River below Orwell Dam, near Filson Creek near Ely Floodwood, Floodwood River above Floodwood River above Floodwood Forbes, St. Louis River at Fort Frances, Ontario, Rainy Lake near Gage height, definition of | 3
3
51
52,176
105,179
133
133
42,176
111 | | Caribou, Roseau River below State ditch 51, near | -102,179
132
3
3
136
112,180
8
135
75,178 | Fecal coliform bacteria, definition of Fecal streptococci bacteria, definition of Fergus Falls, Orwell Lake near Otter Tail River below Orwell Dam, near Filson Creek near Ely Floodwood, Floodwood River above Floodwood River above Floodwood Forbes, St. Louis River at Fort Frances, Ontario, Rainy Lake near Gage height, definition of Gaging-station, definition of | 3
3
51
52,176
105,179
133
133
42,176
111
8
8
8
27-126 | | Caribou, Roseau River below State ditch 51, near | -102,179
132
3
3
3
136
112,180
8
135 | Fecal coliform bacteria, definition of Fecal streptococci bacteria, definition of Fergus Falls, Orwell Lake near Otter Tail River below Orwell Dam, near Filson Creek near Ely Floodwood, Floodwood River above Floodwood River above Floodwood Forbes, St. Louis River at Fort Frances, Ontario, Rainy Lake near Gage height, definition of Gaging-station, definition of records Gaging stations, discontinued | 3
3
51
52,176
105,179
133
133
42,176
111 | | Caribou, Roseau River below State ditch 51, near | -102,179
132
3
3
136
112,180
8
135
75,178
77,178 | Fecal coliform bacteria, definition of. Fecal streptococci bacteria, definition of. Fergus Falls, Orwell Lake near. Otter Tail River below Orwell Dam, near. Filson Creek near Ely. Floodwood, Floodwood River above Floodwood River above Floodwood. Forbes, St. Louis River at. Fort Frances, Ontario, Rainy Lake near. Gage height, definition of. Gaging-station, definition of. records. Gaging stations, discontinued. Gold Portage outlet from Kabetogama Lake near Ray. | 3
3
52,176
105,179
133
133
42,176
111
8
8
27-126
23-26 | | Caribou, Roseau River below State ditch 51, near | -102,179 132 3 3 136 112,180 8 135 75,178 77,178 135 70,177 | Fecal coliform bacteria, definition of Fecal streptococci bacteria, definition of Fergus
Falls, Orwell Lake near Otter Tail River below Orwell Dam, near Filson Creek near Ely Floodwood, Floodwood River above Floodwood River above Floodwood. Forbes, St. Louis River at Fort Frances, Ontario, Rainy Lake near Gage height, definition of Gaging-station, definition of Gaging stations, discontinued. Gold Portage outlet from Kabetogama Lake near Ray Gonvick, Ruffy Brook near | 3
3
52,176
105,179
133
133
42,176
111
8
8
27-126
23-26 | | Caribou, Roseau River below State ditch 51, near | -102,179
132
3
3
136
112,180
8
135
75,178
77,178
135 | Fecal coliform bacteria, definition of Fecal streptococci bacteria, definition of Fergus Falls, Orwell Lake near Otter Tail River below Orwell Dam, near Filson Creek near Ely. Floodwood, Floodwood River above Floodwood River above Floodwood Forbes, St. Louis River at Fort Frances, Ontario, Rainy Lake near Gage height, definition of Gaging-station, definition of records Gaging stations, discontinued Gold Portage outlet from Kabetogama Lake near Ray Gonvick, Ruffy Brook near Goodridge, Red Lake River at High Landing | 3
3
51
52,176
105,179
133
42,176
111
8
8
27-126
23-26 | | Caribou, Roseau River below State ditch 51, near | -102,179 132 3 3 136 112,180 8 135 75,178 77,178 135 70,177 | Fecal coliform bacteria, definition of. Fecal streptococci bacteria, definition of. Fergus Falls, Orwell Lake near Otter Tail River below Orwell Dam, near Filson Creek near Ely Floodwood, Floodwood River above Floodwood River above Floodwood Forbes, St. Louis River at Fort Frances, Ontario, Rainy Lake near Gage height, definition of Gaging-station, definition of Gaging stations, discontinued Gold Portage outlet from Kabetogama Lake near Ray Gonvick, Ruffy Brook near. Goodridge, Red Lake River at High Landing near Graceville, West Branch Mustinka River | 3
3
52,176
105,179
133
42,176
111
8
8
27-126
23-26
137
135 | | Caribou, Roseau River below State ditch 51, near | -102,179 132 3 3 136 112,180 8 135 75,178 77,178 135 70,177 14 | Fecal coliform bacteria, definition of Fecal streptococci bacteria, definition of Fergus Falls, Orwell Lake near Otter Tail River below Orwell Dam, near Filson Creek near Ely Floodwood, Floodwood River above Floodwood River above Floodwood Forbes, St. Louis River at Fort Frances, Ontario, Rainy Lake near Gage height, definition of Gaging-station, definition of records. Gaging stations, discontinued. Gold Portage outlet from Kabetogama Lake near Ray Gonvick, Ruffy Brook near Goodridge, Red Lake River at High Landing near Graceville, West Branch Mustinka River tributary near | 3
3
51
52,176
105,179
133
42,176
111
8
8
27-126
23-26
137
135
73,178 | | Caribou, Roseau River below State ditch 51, near | -102,179
132
3
3
3
136
112,180
8
135
75,178
77,178
77,178
70,177 | Fecal coliform bacteria, definition of. Fecal streptococci bacteria, definition of. Fergus Falls, Orwell Lake near. Otter Tail River below Orwell Dam, near. Filson Creek near Ely. Floodwood, Floodwood River above. Floodwood River above Floodwood. Forbes, St. Louis River at. Fort Frances, Ontario, Rainy Lake near. Gage height, definition of. Gaging-station, definition of. records. Gaging stations, discontinued. Gold Portage outlet from Kabetogama Lake near Ray. Gonvick, Ruffy Brook near. Goodridge, Red Lake River at High Landing near. Graceville, West Branch Mustinka River tributary near. Grand Forks, ND, Red River of the North at | 3
3
52,176
105,179
133
133
42,176
111
8
8
27-126
23-26
137
135
73,178 | | Caribou, Roseau River below State ditch 51, near | -102,179 | Fecal coliform bacteria, definition of Fecal streptococci bacteria, definition of Fergus Falls, Orwell Lake near Otter Tail River below Orwell Dam, near Filson Creek near Ely Floodwood, Floodwood River above Floodwood River above Floodwood Forbes, St. Louis River at Fort Frances, Ontario, Rainy Lake near Gage height, definition of Gaging-station, definition of records. Gaging stations, discontinued. Gold Portage outlet from Kabetogama Lake near Ray Gonvick, Ruffy Brook near Goodridge, Red Lake River at High Landing near Graceville, West Branch Mustinka River tributary near | 3
3
51
52,176
105,179
133
42,176
111
8
8
27-126
23-26
137
135
73,178
133
83-85
132 | | Caribou, Roseau River below State ditch 51, near | -102,179 | Fecal coliform bacteria, definition of. Fecal streptococci bacteria, definition of. Fergus Falls, Orwell Lake near. Otter Tail River below Orwell Dam, near. Filson Creek near Ely. Floodwood, Floodwood River above. Floodwood River above Floodwood. Forbes, St. Louis River at. Fort Frances, Ontario, Rainy Lake near. Gage height, definition of. Gaging-station, definition of. records. Gaging stations, discontinued. Gold Portage outlet from Kabetogama Lake near Ray. Gonvick, Ruffy Brook near. Goodridge, Red Lake River at High Landing near. Graceville, West Branch Mustinka River tributary near. Grand Forks, ND, Red River of the North at. Grand Marais, Little Devil Track River near. Grand Portage, Pigeon River at Middle Falls near. | 3
3
51
52,176
105,179
133
42,176
111
8
8
27-126
23-26
137
135
73,178
133
83-85
132
27,175 | | Caribou, Roseau River below State ditch 51, near | -102,179 | Fecal coliform bacteria, definition of. Fecal streptococci bacteria, definition of. Fergus Falls, Orwell Lake near. Otter Tail River below Orwell Dam, near. Filson Creek near Ely. Floodwood, Floodwood River above. Floodwood River above Floodwood. Forbes, St. Louis River at. Fort Frances, Ontario, Rainy Lake near. Gage height, definition of. Gaging-station, definition of. records. Gaging stations, discontinued. Gold Portage outlet from Kabetogama Lake near Ray. Gonvick, Ruffy Brook near. Goodridge, Red Lake River at High Landing near. Graceville, West Branch Mustinka River tributary near. Grand Forks, ND, Red River of the North at. Grand Marais, Little Devil Track River near. Grand Portage, Pigeon River at Middle Falls near. Grygla, Mud River near. | 3
3
52,176
105,179
133
42,176
111
8
8
27-126
23-26
137
135
73,178
133
83-85
132
27,175
135 | | Caribou, Roseau River below State ditch 51, near | -102,179 | Fecal coliform bacteria, definition of. Fecal streptococci bacteria, definition of. Fergus Falls, Orwell Lake near. Otter Tail River below Orwell Dam, near. Filson Creek near Ely. Floodwood, Floodwood River above. Floodwood River above Floodwood. Forbes, St. Louis River at. Fort Frances, Ontario, Rainy Lake near. Gage height, definition of. Gaging-station, definition of. Gaging stations, discontinued. Gold Portage outlet from Kabetogama Lake near Ray. Gonvick, Ruffy Brook near. Goodridge, Red Lake River at High Landing near. Grand Forks, ND, Red River of the North at. Grand Forks, ND, Red River of the North at. Grand Portage, Pigeon River at Middle Falls near. Grygla, Mud River near. Green algae, definition of. | 3
3
51
52,176
105,179
133
42,176
111
8
8
27-126
23-26
137
135
73,178
133
83-85
132
27,175 | | Caribou, Roseau River below State ditch 51, near | -102,179 | Fecal coliform bacteria, definition of. Fecal streptococci bacteria, definition of. Fergus Falls, Orwell Lake near. Otter Tail River below Orwell Dam, near. Filson Creek near Ely. Floodwood, Floodwood River above. Floodwood River above Floodwood. Forbes, St. Louis River at. Fort Frances, Ontario, Rainy Lake near. Gage height, definition of. Gaging-station, definition of. records. Gaging stations, discontinued. Gold Portage outlet from Kabetogama Lake near Ray. Gonvick, Ruffy Brook near. Goodridge, Red Lake River at High Landing near. Graceville, West Branch Mustinka River tributary near. Grand Forks, ND, Red River of the North at. Grand Marais, Little Devil Track River near. Grand Portage, Pigeon River at Middle Falls near. Grygla, Mud River near. Green algae, definition of. Ground-water, level data, by county. in hydrologic conditions. | 3
3
52,176
105,179
133
133
42,176
111
8
8
27-126
23-26
137
135
73,178
133
83-85
132
27,175
135
10
184-205
2 | | Caribou, Roseau River below State ditch 51, near | -102,179 | Fecal coliform bacteria, definition of. Fecal streptococci bacteria, definition of. Fergus Falls, Orwell Lake near. Otter Tail River below Orwell Dam, near. Filson Creek near Ely. Floodwood, Floodwood River above. Floodwood River above Floodwood. Forbes, St. Louis River at. Fort Frances, Ontario, Rainy Lake near. Gage height, definition of. Gaging-station, definition of. records. Gaging stations, discontinued. Gold Portage outlet from Kabetogama Lake near Ray. Gonvick, Ruffy Brook near. Goodridge, Red Lake River at High Landing near. Graceville, West Branch Mustinka River tributary near. Grand Forks, ND, Red River of the North at. Grand Portage, Pigeon River at Middle Falls near. Grygla, Mud River near. Green algae, definition of. Ground-water, level data, by county. | 3
3
51
52,176
105,179
133
42,176
111
8
8
27-126
23-26
137
135
73,178
133
83-85
132
27,175
135
10
184-205 | | Caribou, Roseau River below State ditch 51, near | -102,179 | Fecal coliform bacteria, definition of. Fecal streptococci bacteria, definition of. Fergus Falls, Orwell Lake near. Otter Tail River below Orwell Dam, near. Filson Creek near Ely. Floodwood, Floodwood River above. Floodwood River above Floodwood. Forbes, St. Louis River at. Fort Frances, Ontario, Rainy Lake near. Gage height, definition of. Gaging-station, definition of. records. Gagling stations, discontinued. Gold Portage outlet from Kabetogama Lake near Ray. Gonvick, Ruffy
Brook near. Goodridge, Red Lake River at High Landing near. Graceville, West Branch Mustinka River tributary near. Grand Forks, ND, Red River of the North at. Grand Forks, ND, Red River at Middle Falls near. Grand Forkage, Pigeon River at Middle Falls near. Grygla, Mud River near. Green algae, definition of. Ground-water, level data, by county. in hydrologic conditions. quality data, by county. | 3
3
52,176
105,179
133
133
42,176
111
8
8
27-126
23-26
137
135
73,178
133
83-85
132
27,175
135
10
184-205
2 | | Caribou, Roseau River below State ditch 51, near | -10 2,179 | Fecal coliform bacteria, definition of. Fecal streptococci bacteria, definition of. Fergus Falls, Orwell Lake near. Otter Tail River below Orwell Dam, near. Filson Creek near Ely. Floodwood, Floodwood River above. Floodwood River above Floodwood. Forbes, St. Louis River at. Fort Frances, Ontario, Rainy Lake near. Gage height, definition of. Gaging-station, definition of. records. Gaging stations, discontinued. Gold Portage outlet from Kabetogama Lake near Ray. Gonvick, Ruffy Brook near. Goodridge, Red Lake River at High Landing near. Graceville, West Branch Mustinka River tributary near. Grand Forks, ND, Red River of the North at. Grand Marais, Little Devil Track River near. Grand Portage, Pigeon River at Middle Falls near. Grygla, Mud River near. Green algae, definition of. Ground-water, level data, by county. in hydrologic conditions. quality data, by county. Halstad, Red River of the North at. Hardness of water, definition of. | 3
3
52,176
105,179
133
42,176
1111
8
8
27-126
23-26
137
135
73,178
133
83-85
132
27,175
135
10
184-205
206-207
66-68 | | Caribou, Roseau River below State ditch 51, near | -10 2,179 | Fecal coliform bacteria, definition of Fecal streptococci bacteria, definition of Fergus Falls, Orwell Lake near Otter Tail River below Orwell Dam, near Filson Creek near Ely. Floodwood, Floodwood River above Floodwood River above Floodwood Forbes, St. Louis River at Fort Frances, Ontario, Rainy Lake near Gage height, definition of Gaging-station, definition of records Gaging stations, discontinued Gold Portage outlet from Kabetogama Lake near Ray Gonvick, Ruffy Brook near Goodridge, Red Lake River at High Landing near Graceville, West Branch Mustinka River tributary near Grand Forks, ND, Red River of the North at Grand Marais, Little Devil Track River near Grand Portage, Pigeon River at Middle Falls near Grygla, Mud River near Green algae, definition of Ground-water, level data, by county in hydrologic conditions quality data, by county Halstad, Red River of the North at. | 3
3
51
52,176
105,179
133
42,176
111
8
8
27-126
23-26
137
135
73,178
133
83-85
132
27,175
135
10
184-205
206-207 | | | Page | | Page | |--|--------------------|---|---------------| | Hendrum, Wild Rice River at | 65,177
56-57 | Mahnomen, Marsh Creek tributary near | 134 | | High-flow partial-record stations | 132-136 | Malung, Roseau River below South Fork, near Manitou Rapids, Rainy River at119- | 92,179 | | Holyoke, Deer Creek near | 50,176 | Map of Minnesota ground-water observation | -124,100 | | Nemadji River near | 133 | wells | 182-183 | | South Fork Nemadji River near | 133 | high-flow partial-record stations | 130-131 | | Hoyt Lakes, Partridge River above Colby | E 20 1 FE | water-discharge stations | 18-19 | | Lake at | | water-quality stations | 20-21 | | Hydrologic benchmark station, definition of Hydrologic conditions | 13
2 | Marsh Creek tributary near Mahnomen | 134
69,177 | | graphs of | 4-7 | Marsh River near Shelly | 11 | | ground-water levels | 2 | Mean discharge, definition of | 8 | | precipitation and streamflow | 2 | Measurements at miscellaneous sites | 137 | | water quality | 2 | Metamorphic stage, definition of | 8 | | Hydrologic unit, definition of | 8 | Methylene blue active substance, | 9 | | Introduction | 1 | definition of | 9 | | Instantaneous discharge, definition of | 8 | Micrograms per kilogram, definition of | 9 | | International Falls, Cruiser Lake near | 163-164 | Micrograms per liter, definition of | 9 | | Locator Lake near | 169-170 | Middle River at Argyle | 86,178 | | Namakan Lake above Kettle Falls near | 165-166 | near Newfolden | 135 | | Oslo Lake near | 167-168
171-172 | Miller Creek at Duluth | 132 | | Rainy Lake at Brule Narrows near | 173-174 | Milligrams of carbon per area or volume | 10 | | Shoepack Lake near | 161-162 | per unit time, definition of Milligrams of oxygen per area or volume | 10 | | | | per unit time, definition of | 10 | | Kabetogama Lake at mouth of Meadwood Bay | | Milligrams per liter, definition of | 9 | | near Ray | 151-152 | Miscellaneous analyses of streams in | | | at Sullivan Bay outlet near Ray | 149-150 | Minnesota, water-quality data at | 175 100 | | in Lost Bay near Raynear Ray | 159-160
157-158 | streamflow stations | 175-180 | | Kawishiwi River near Ely | | Miscellaneous sites, discharge measurements at | 137 | | near Winton | 106,179 | numbering system for | 13 | | Knife River near Two Harbors | 34,175 | Mosquito Creek near Bagley | 134 | | | | Mud River near Grygla | 135 | | | | Mukooda Lake near Crane Lake | 138-139 | | Lac la Croix, Ontario, Namakan River at | 108 170 | V 1 Tolono Volta Politica Politica | | | outlet of | 108,179
135 | Namakan Lake above Kettle Falls near International Falls | 165-166 | | Lakes and Reservoirs: | 137 | at mouth of Namakan River, Ontario | 155-156 | | Cruiser Lake near International Falls | 163-164 | near Ray | 153-154 | | Kabetogama Lake at Sullivan Bay outlet | | Namakan River at outlet of Lac la Croix, | | | near Ray | 149-150 | Ontario | 108,179 | | at mouth of Meadwood Bay near Ray | 151-152 | Namakan Lake at mouth of | 155-156 | | in Lost Bay near Raynear Ray | 159-160
157-158 | Nashaua, Rabbit River near | 134 | | Lake of the Woods at Warroad | 126 | National Geodetic Vertical Datum of 1929 | 9 | | Locator Lake near International Falls | 169-170 | (NGVD), definition of | , | | Lower Red Lake near Red Lake | 71 | (NASQAN), definition of | 13 | | Mukooda Lake near Crane Lake | 138-139 | Natural substrate, definition of | 11 | | Namakan Lake above Kettle Falls near | 165 166 | Nemadji River near Holyoke | 133 | | International Falls | 165-166 | Newfolden, Middle River near | 135 | | at mouth of Namakan River, Ontario near Ray | 155-156
153-154 | North Branch Whiteface River near Fairbanks | 133 | | O'Leary Lake near Crane Lake | 147-148 | Northome, South Branch Battle River at Numbering system for wells and | 135 | | Orwell Lake near Fergus Falls | 51 | miscellaneous sites | 13 | | Oslo Lake near International Falls | 167-168 | milocia di controlli | -3 | | Rainy Lake at Black Bay near International | | | | | Falls | 171-172 | Ogema, Spring Creek tributary near | 134 | | at Brule Narrows near International | 172 17h | Oklee, Lost River at | 76,178 | | Fallsnear Fort Frances, Ontario | 173-174
111 | O'Leary Lake near Crane Lake | 147-148 | | Sandpoint Lake below Harrison Narrows | 111 | Organic mass, definition of | 3 | | near Crane Lake | 140-141 | Organism, definition of | 9 | | Shoepack Lake near International Falls | 161-162 | count/volume, definition of | ģ | | Vermilion Lake near Soudan | 109 | Orwell Lake near Fergus Falls | 51 | | Lake of the Woods at Warroad | 126 | Oslo Lake near International Falls | 167-168 | | Lake of the Woods basin, gaging-station | 102 126 | Other data available | 16 | | records inhigh-flow partial-record stations in | 103-126
135-136 | Otter Tail River below Qrwell Dam, near Fergus Falls | 52,176 | | measurements at miscellaneous sites in | 137 | retkno ratio | 92,110 | | Lake Superior, streams tributary to, high- | -5, | | | | flow partial-record stations | 132-133 | Parameter code numbers | 9 | | streams tributary to, gaging-station | | Partial-record station, definition of | 9 | | records | 27- 50 | Particle-size classification, definition of | 9 | | List of gaging-stations, in downstream order, | vı | Particle-size, definition of | 9 | | for which records are published
List of counties for which ground-water-level | ∨ т | Partridge River above Colby Lake, at Hoyt Lakes | 529 175 | | records are published | VII | near Aurora | 40,175 | | Little Devil Track River near Grand Marais | 132 | Percent composition, definition of | 9 | | Little Fork River at Cook | 135 | Periphyton, definition of | ģ | | at Littlefork | | Perry Creek tributary near Shooks | 135 | | Little fork, Little Fork River at | | Pesticides, definition of | 19 | | Little Marais, Caribou River near
Little Stewart River near Two Harbors | 132
132 | Pesticide program, definition of | 13 | | Locator Lake near International Falls | 169-170 | Phytoplankton, definition of | 10
9 | | Lost River at Oklee | 76,178 | Pigeon River at Middle Falls, near Grand | , | | Lower Red Lake near Red Lake | 71 | Portage | 27,175 | | Lutsen, Poplar River at | 132 | Plankton, definition of | 10 | 211 | | Page | | Page | |--|------------------|--|----------------| | Plummer, Clearwater River at | 75,178 | South Branch Battle River at Northome | 135 | | Clearwater River tributary near | 135 | South Branch Buffalo River at Sabin | 62,176 | | Polychlorinated biphenyls, definition of | 10 | South Branch Two Rivers at Lake Bronson | 135 | | Poplar River at Lutsen | 132 | | | | | _ | South Branch Wild Rice River near Borup | 134 | | Precipitation and streamflow | 2 | South Fork Nemadji River near Holyoke | 133 | | Primary productivity, definition of | 10
| Special networks and programs | 13 | | Publications on techniques of water- | 2.2 | Specific conductance, definition of | 11 | | resources investigations | 22 | Specific conductance and temperature at | | | D 11.1. D1 | 104 | streamflow stations | 175-180 | | Rabbit River near Nashaua | 134 | Spring Creek above Downer | 134 | | Radiochemical program, definition of | 13 | Spring Creek near Blackduck | 135 | | Rainy Lake at Black Bay near International | | tributary near Ogema | 134 | | Falls | 171-172 | Stage-discharge relation, definition of | 11 | | at Brule Narrows near International Falls | 173-174 | Stage and water-discharge data, accuracy of | 16 | | near Fort Frances, Ontario | 111 | collection and computation of | 14 | | Rainy River at Manitou Rapids119- | -124,180 | explanation of | 14 | | Rapid River near Baudette | 125,180 | other available | 16 | | Ray, Ash River at Ash River Falls near | 142 | Station numbers, explanation of | 12 | | Ash River above mouth of Cannon Creek near | 143 | Streamflow, definition of | 11 | | Ash River at entrance to Sullivan Bay | | in hydrologic conditions | 2 | | outlet near | 145-146 | Streams tributary to Lake Superior | | | Ash River below mouth of Cannon Creek near | 144 | high-flow partial-record stations in | 132-133 | | Gold Portage outlet from Kabetogama | | gaging-station records in | 27-50 | | Lake near | 137 | Sturgeon River near Chisholm | 112,180 | | Kabetogama Lake at Sullivan Bay outlet | | Substrate, definition of | 11 | | near | 149-150 | Surface area, definition of | 11 | | Kabetogama Lake at mouth of Meadwood Bay | | Surface-water data, accuracy of | 16 | | Bay near | 151-152 | collection and computation of data | 14 | | Kabetogama Lake in Lost Bay near | 159-160 | | 16 | | Kabetogama Lake near | 157-158 | other available | 11 | | Namakan Lake near | 153-154 | Suspended, definition of | 11 | | Records of discharge collected by agencies | 475" LJ" | | 11 | | other than the Geological Survey | 16 | Suspended recoverable, definition of | 11 | | | 10 | Suspended total, definition of | 10 | | Recoverable from bottom material, definition of | 10 | Suspended sediment, definition of | 10 | | | 71 | Suspended-sediment concentration | 10 | | Red Lake, Lower Red Lake near | | definition of | 10 | | Red Lake River nearRed Lake Falls, Clearwater River at | 72,177
77,178 | Suspended-sediment discharge, definition of | 11 | | Red Lake River at Crookston7 | | Suspended-sediment load, definition of | 11 | | at High Landing, near Goodridge | 73,178 | Malmadma Dimon at Duluth | 132 | | near Red Lake | 72,177 | Talmadge River at Duluth | 12 | | Red River of the North at Drayton, ND | 87-88 | Taxonomy, definition of | 2 | | at Emerson, Manitoba | 89-91 | Thief River near Thief River Falls | 74,178 | | at Fargo, ND | 58-59 | Thief River Falls, Thief River near | 74,178 | | at Grand Forks, ND | 83-85 | Time-weighted average, definition of | 12 | | at Halstad | 66-68 | Tons per acre-foot, definition of | 12 | | at Hickson, ND | 56-57 | Tons per day, definition of | 12 | | at Wahpeton, ND | 54-55 | Total, definition of | 12 | | below Fargo, ND | 60 | Total in bottom material, definition of | 12 | | Red River of the North basin, high-flow | | Total coliform bacteria, definition of | | | partial-record stations in | 133-135 | Total load, definition of | 3
12 | | gaging-station records in | 51-102 | Total organism count, definition of | 9 | | miscellaneous measurements in | 137 | Total recoverable, definition of | 12 | | Reservoir (see lakes and reservoirs) | -5, | Total sediment discharge, definition of | 11 | | Rock Creek near Blackhoof | 133 | Tower, Vermilion River (tributary to Namakan | | | tributary near Blackhoof | 133 | River), below Vermilion Lake near | 137 | | Roseau Lake, Roseau River at | 94 | Tritium network, definition of | 14 | | Roseau River at Roseau Lake | 94 | Twin Valley, Coon Creek near | 134 | | at Ross | 95,179 | Wild Rice River at | 64,177 | | below Roseau | 93,137 | Wild Rice River tributary near | 134 | | below State ditch 51, near Caribou96 | -102,179 | Two Harbors, Knife River near | 34,175 | | below South Fork, near Malung | 92,179 | | | | near Roseau | 137 | Little Stewart River near | 132
132 | | Roseau, Roseau River below | 93,137 | Silver Creek tributary near | 122 | | Roseau River near | 137 | | | | Ross, Roseau River at | 95,179 | Manual Idan Talan maan Gandan | 100 | | Ruffy Brook near Gonvick | 135 | Vermilion Lake near Soudan | 109 | | | 10 | Vermilion River below Vermilion Lake, | 127 | | Runoff in inches, definition of | 10 | near Tower | 137
110,180 | | Sabin, South Branch Buffalo River at | 62,176 | near Crane Lake | 110,100 | | St. Louis River at Forbes | 42,176 | Voyageurs National Park, water-quality partial-record stations | 138-174 | | at Scanlon4 | | Ash River at Ash River Falls near Ray | 142 | | near Aurora | 41,175 | above mouth of Cannon Creek near Ray | 143 | | Sand Hill River at Climax | 70,177 | | 145-146 | | Sandpoint Lake below Harrison Narrows near | 10,111 | at entrance to Sullivan Bay near Ray | 149-140 | | Crane Lake | 140-141 | below mouth of Cannon Creek near Ray | 163-164 | | Scanlon, St. Louis River at 4 | | Cruiser Lake near International Falls Kabetogama Lake at Sullivan Bay outlet | 103-104 | | Sediment, definition of | 10 | near Ray | 149-150 | | explanation of | 17 | at mouth of Meadwood Bay near Ray | 151-152 | | Shaw, Bug Creek at | 133 | in Lost Bay near Ray | 159-160 | | Shelly, Marsh River near | 69,177 | near Ray | 157-158 | | Shoepack Lake near International Falls | 161-162 | Locator Lake near International Falls | 169-170 | | Shooks, Perry Creek tributary near | 135 | Mukooda Lake near Crane Lake | 138-139 | | Silver Creek, Encampment River tributary at | 132 | Namakan Lake above Kettle Falls near | 150-159 | | Silver Creek near Clearbrook | 135 | International Falls | 165-166 | | tributary near Two Harbors | 132 | at mouth of Namakan River, Ontario | 155-156 | | Snake River at Warren | 137 | near Ray | 153-154 | | Solute, definition of | 11 | O'Leary Lake near Crane Lake | 147-148 | | Soudan, Vermilion Lake near | 109 | Oslo Lake near International Falls | 167-168 | | | 10) | OBTO HOVE HEST THRETHOSTONGT LOTTER ******** | 701-100 | INDEX | | Page | | Page | |--|---------|--|---------| | Voyageurs National ParkContinued | 9 | Water-quality records, | | | Rainy Lake at Black Bay near International | | water analysis | 16 | | Falls | 171-172 | water temperature | 17 | | Rainy Lake at Brule Narrows near | -,,- | Weighted average, definition of | 12 | | International Falls | 173-174 | Well number, definition of | 13 | | Sandpoint Lake below Harrison Narrows | -13 -1 | West Branch Mustinka River tributary near | | | near Crane Lake | 140-141 | Graceville | 133 | | Shoepack Lake near International Falls | 161-162 | Wet mass, definition of | 3 | | oncopacit zano near antinatana near antinatana | | Wheaton, Eighteen Mile Creek near | 133 | | Wahpeton, ND, Red River of the North at | 54-55 | Whiskey Creek at Barnesville | 134 | | Warren, Snake River at | 137 | Whiteface River, North Branch, near | -3. | | Warroad, Bulldog Run near | 136 | Fairbanks | 133 | | East Branch Warroad River near | 136 | White Rock, SD, Bois de Sioux River near | 53,176 | | Lake of the Woods at | 126 | Wild Rice River at Hendrum | 65,177 | | Warroad River. East Branch near Warroad | 136 | at Twin Valley | 64,177 | | Water-quality records, analyses of samples | 130 | near Ada | 137 | | collected at ground-water wells | 206-207 | tributary near Twin Valley | 134 | | at partial-record stations | 138-174 | Winton, Basswood River near | 107.179 | | collection and examination of | 16 | Kawishiwi River near | 106.179 | | explanation of | 16 | WDR, definition of | 12 | | in hydrologic conditions | 2 | WRD, definition of | 12 | | miscellaneous analysis at streamflow | ۷ |
WSP, definition of | 12 | | stations | 175-180 | noi, doi into ion of the transfer and in t | 12 | | | 175-100 | Zooplankton, definition of | 10 | | sediment | 1 (| noobrankoon, derrureren or | 10 | # FACTORS FOR CONVERTING INCH-POUND UNITS TO INTERNATIONAL SYSTEM UNITS (SI) The following factors may be used to convert the inch-pound units published herein to the International System of Units (SI). This report contains both the inch-pound and SI unit equivalents in the station manuscript descriptions. | Multiply inch-pound units | Ву | To obtain SI units | |--|------------------------|---| | | Length | | | inches (in) | 2.54x10 ¹ | millimeters (mm) | | | 2.54x10 ⁻² | meters (m) | | feet (ft) | 3.048x10 ⁻¹ | meters (m) | | miles (mi) | 1.609x10° | kilometers (km) | | | Area | | | acres | 4.047x10 ³ | square meters (m ²) | | | 4.047x10 ⁻¹ | square hectometers (hm²) | | | 4.047x10 ⁻³ | square kilometers (km²) | | square miles (mi ²) | 2.590x10° | square kilometers (km²) | | | Volume | | | gallons (gal) | 3.785x10° | liters (L) | | | 3.785x10° | cubic decimeters (dm ³) | | | 3.785x10 ⁻³ | cubic meters (m ³) | | million gallons | 3.785×10^{3} | cubic meters (m ³) | | | 3.785x10 ⁻³ | cubic hectometers (hm³) | | cubic feet (ft ³) | 2.832x10 ¹ | cubic decimeters (dm ³) | | | 2.832x10 ⁻² | cubic meters (m ³) | | cfs-days | 2.447×10^3 | cubic meters (m ³) | | | 2.447×10^{-3} | cubic hectometers (hm³) | | acre-feet (acre-ft) | 1.233×10^{3} | cubic meters (m ³) | | | 1.233x10 ⁻³ | cubic hectometers (hm³) | | | 1.233x10 ⁻⁶ | cubic kilometers (km³) | | | Flow | | | cubic feet per second (ft ³ /s) | 2.832x101 | liters per second (L/s) | | | 2.832x10 ¹ | cubic decimeters per second (dm³/s) | | | 2.832x10 ⁻² | cubic meters per second (m ³ /s) | | gallons per minute (gal/min) | 6.309x10 ⁻² | liters per second (L/s) | | | 6.309x10 ⁻² | cubic decimeters per second (dm³/s) | | | 6.309x10 ⁻⁵ | cubic meters per second (m ³ /s) | | million gallons per day | 4.381x10 ¹ | cubic decimeters per second (dm³/s) | | | 4.381x10 ⁻² | cubic meters per second (m³/s) | | | Mass | | | tons (short) | 9.072x10 ⁻¹ | megagrams (Mg) or metric tons | | | | | POSTAGE AND FEES PAID U.S. DEPARTMENT OF THE INTERIOR INT 413 U.S. DEPARTMENT OF THE INTERIOR Geological Survey 702 Post Office Building St. Paul, MN 55101 OFFICIAL BUSINESS PENALTY FOR PRIVATE USE \$300 SPECIAL 4TH CLASS BOOK RATE